Problem Set 2

Ruben Perez Sanz

7 September, 2019

Problem 1. Solve the following limits

1. $\lim _{x \rightarrow 0} \frac{x(1-x)}{3 x^{2}}$
2. $\lim _{x \rightarrow 0} \frac{x-3}{x^{2}+x-12}$
3. $\lim _{x \rightarrow 1} \frac{x+2}{x^{2}-4}$
4. $\lim _{x \rightarrow-1} \frac{2 x^{2}+x-6}{x+2}$
5. $\lim _{x \rightarrow \infty} \frac{2 x^{3}-x^{2}+7 x-3}{2-x+5 x^{2}-4 x^{3}}$
6. $\lim _{x \rightarrow \infty} \sqrt{x+1}-\sqrt{x}$

Problem 2. For what value of b does the function $y=x^{2}+b x+1$ have a horizontal tangent at $x=3$?

Problem 3. Find the two points on the curve $y=x-\frac{1}{4} x^{2}$ at which the tangent passes through the point $\left(\frac{9}{2}, 0\right)$

Problem 4. Use the three-step rule to calculate $f^{\prime}(x)$ if $f(x)$ is equal to:

1. $\frac{x+1}{x}$
2. $\frac{3-2 x}{x-2}$
3. $\sqrt{3 x+2}$
4. $\sqrt{x^{2}+1}$

Problem 5. A car riding company takes passengers from one side of the city to the other at a fix price per meter m. The costs of the company vary according to the following Total Cost Function: $C T(m)=3 m^{2}+5 m+2$. At what rate is the cost changing at every moment? Hint: find the rate of change as $\Delta m \rightarrow 0$

Problem 6. Find all points on the curve $y=\frac{6}{x}$ where the tangent is parallel to the line $2 x+3 y+1=0$

Problem 7. Sketch the graph of the curve $y=\frac{x}{x+1}$. how many tangent lines pass through the point $(1,3)$? Find the x-coordinates of the points of tangency of these lines.

Problem 8. Let P be a point on the first-quadrant part of the curve $y=\frac{1}{x}$. Show that the triangle determined by the x-axis, the tangent at P, and the line from P to the origin is isosceles, and find its area.

Problem 9. Find $\frac{\partial s}{\partial t}$:

1. $s=\frac{1}{(2 t-1)^{2}}$
2. $s=\frac{t^{4}-10 t^{2}}{\left(t^{2}-6\right)^{2}}$

Problem 10. Find $\frac{\partial y}{\partial x}$ by two methods, first without the power rule and then using the power rule.

1. $y=u^{2}, u=x^{2}-3 x+2$
2. $y=u^{3}, u=x-\frac{1}{x}$

Problem 11. Find $\frac{\partial y}{\partial x}$ by implicit differentiation and also by solving for y and then differentiating, and verify that your two answers are equivalent.

1. $2 x^{2}+3 x+y^{2}=12$
2. $\frac{1-y}{1+y}=x$

Problem 12. Find the tangent line of:

1. $y=(5-3 x)^{\frac{1}{3}}$ at $(-1,2)$
2. $x^{4}+16 y^{4}=32$ at $(2,1)$

Problem 13. Find the first four derivatives of:

1. $8 x-3$
2. $8 x^{2}-11 x+2$
3. $x^{4}-13 x^{3}+5 x^{2}-3 x-2$
4. $x^{\frac{5}{2}}$
