Optimisation

Rubén Pérez Sanz

Universitat Autònoma de Barcelona

May 14, 2021

Table of Contents

1. Introduction
2. Interior Optima
3. Equality constraints
4. Inequality constraints

Table of Contents

1. Introduction

2. Interior Optima

3. Equality constraints

4. Inequality constraints

INTRODUCTION

INTUITION

In economics, agents are assumed to be endowed with a payoff function, which is nothing else than an ordering of their preferences over the results of their actions.

INTRODUCTION

INTUITION

In economics, agents are assumed to be endowed with a payoff function, which is nothing else than an ordering of their preferences over the results of their actions.

At the same time, agents are supposed to take rational choices, meaning that they maximised these payoff functions.

INTRODUCTION

INTUITION

In economics, agents are assumed to be endowed with a payoff function, which is nothing else than an ordering of their preferences over the results of their actions.

At the same time, agents are supposed to take rational choices, meaning that they maximised these payoff functions.

For example:

- Consumers are meant to maximise their utility over purchases
- Firms are supposed to maximise profits over investments
- Parties maximise votes over programmes
- and so on...

INTRODUCTION

DEFINITION

Let $f(\mathbf{x})$ be a function of many variables defined on a set X and let S be a subset of X. The point $\mathbf{x}^{*} \in S$ solves the problem

$$
\begin{array}{r}
\max _{\mathbf{x}} f(\mathbf{x}) \\
\text { subject to } \mathbf{x} \in S
\end{array}
$$

if

INTRODUCTION

DEFINITION

Let $f(\mathbf{x})$ be a function of many variables defined on a set X and let S be a subset of X. The point $\mathbf{x}^{*} \in S$ solves the problem

$$
\begin{array}{r}
\max _{\mathbf{x}} f(\mathbf{x}) \\
\text { subject to } \mathbf{x} \in S
\end{array}
$$

if

$$
f(\mathbf{x}) \leq f\left(\mathbf{x}^{*}\right) \quad \forall \mathbf{x} \in S
$$

INTRODUCTION

DEFINITION

Let $f(\mathbf{x})$ be a function of many variables defined on a set X and let S be a subset of X. The point $\mathbf{x}^{*} \in S$ solves the problem

$$
\begin{array}{r}
\max _{\mathbf{x}} f(\mathbf{x}) \\
\text { subject to } \mathbf{x} \in S
\end{array}
$$

if

$$
f(\mathbf{x}) \leq f\left(\mathbf{x}^{*}\right) \quad \forall \mathbf{x} \in S
$$

In this case we say that \mathbf{x}^{*} is a maximiser of $f(\mathbf{x})$ subject to the constraint $\mathbf{x} \in S$, and that $f\left(\mathbf{x}^{*}\right)$ is the maximum (or maximum value) of $f(\mathbf{x})$ subject to the constraint $\mathbf{x} \in S$.

INTRODUCTION

LOCAL VS GLOBAL
Let $f(\mathbf{x})$ be a function of many variables defined on a set X and let S be a subset of X.

INTRODUCTION

LOCAL VS GLOBAL
Let $f(\mathbf{x})$ be a function of many variables defined on a set X and let S be a subset of X.

The point \mathbf{x}^{*} is a local maximiser of $f(\mathbf{x})$ subject to $\mathbf{x} \in S$ if there is a number $\epsilon>0$ such that $f(\mathbf{x}) \leq f\left(\mathbf{x}^{*}\right)$ for which the distance between \mathbf{x} and \mathbf{x}^{*} is at most ϵ.

INTRODUCTION

LOCAL VS GLOBAL
Let $f(\mathbf{x})$ be a function of many variables defined on a set X and let S be a subset of X.

The point \mathbf{x}^{*} is a local maximiser of $f(\mathbf{x})$ subject to $\mathbf{x} \in S$ if there is a number $\epsilon>0$ such that $f(\mathbf{x}) \leq f\left(\mathbf{x}^{*}\right)$ for which the distance between \mathbf{x} and \mathbf{x}^{*} is at most ϵ.

Local maximum around the interval S

INTRODUCTION

INCREASING TRANSFORMATIONS

PROPOSITION: Let $g(\mathbf{z})$ be a strictly increasing function of a single variable, that is:

$$
\text { if } \mathbf{z}^{\prime}>\mathbf{z} \Rightarrow g\left(\mathbf{z}^{\prime}\right)>g(\mathbf{z})
$$

INTRODUCTION

INCREASING TRANSFORMATIONS

PROPOSITION: Let $g(\mathbf{z})$ be a strictly increasing function of a single variable, that is:

$$
\text { if } \mathbf{z}^{\prime}>\mathbf{z} \Rightarrow g\left(\mathbf{z}^{\prime}\right)>g(\mathbf{z})
$$

then the set of solutions to the problem:

$$
\begin{array}{cc}
\max _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in S
\end{array} \text { is equal to } \max _{\mathbf{x}} \quad g(f(\mathbf{x}))
$$

INTRODUCTION

INCREASING TRANSFORMATIONS

PROPOSITION: Let $g(\mathbf{z})$ be a strictly increasing function of a single variable, that is:

$$
\text { if } \mathbf{z}^{\prime}>\mathbf{z} \Rightarrow g\left(\mathbf{z}^{\prime}\right)>g(\mathbf{z})
$$

then the set of solutions to the problem:

$$
\begin{array}{cccc}
\max _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in S
\end{array} \text { is equal to } \max _{\mathbf{x}} \quad g(f(\mathbf{x}))
$$

REMARK: This fact is useful since a function $f(\mathbf{x})$ can be transformed in such a way that the resulting function is easier to work with.

INTRODUCTION
 INCREASING TRANSFORMATIONS

Example: Consider the function $u\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{\beta}$

INTRODUCTION

INCREASING TRANSFORMATIONS

Example: Consider the function $u\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{\beta}$
It might be easier to work with the transformation $v\left(x_{1}, x_{2}\right)=$ $\ln \left(\left(u\left(x_{1}, x_{2}\right)\right)\right.$

INTRODUCTION

INCREASING TRANSFORMATIONS

Example: Consider the function $u\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{\beta}$
It might be easier to work with the transformation $v\left(x_{1}, x_{2}\right)=$ $\ln \left(\left(u\left(x_{1}, x_{2}\right)\right)\right.$

$$
\nu\left(x_{1}, x_{2}\right)=\alpha \ln x_{1}+\beta \ln x_{2}
$$

INTRODUCTION
 MINIMISATION PROBLEMS

Throughout the previous slides we have only focused on maximisation problems, but what about the minimisation ones?

INTRODUCTION

MINIMISATION PROBLEMS

Throughout the previous slides we have only focused on maximisation problems, but what about the minimisation ones?

As it turns out that any minimisation problem can be converted into one of maximisation flipping upside down the objective function $f(\mathbf{x})$, so that:

INTRODUCTION

MINIMISATION PROBLEMS

Throughout the previous slides we have only focused on maximisation problems, but what about the minimisation ones?

As it turns out that any minimisation problem can be converted into one of maximisation flipping upside down the objective function $f(\mathbf{x})$, so that:

$$
\begin{array}{cc}
\min _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in S
\end{array} \text { is equal to } \begin{array}{cc}
\max _{\mathbf{x}} & -f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in S
\end{array}
$$

INTRODUCTION
 MINIMISATION PROBLEMS

Example:

Minimisation problem

INTRODUCTION
 MINIMISATION PROBLEMS

Example:

Minimisation problem

Maximisation problem

INTRODUCTION CONDITIONS OF AN OPTIMUM

EXTREME VALUE THEOREM: let $f(\mathbf{x})$ be a continuous function defined on X and let S be a compact subset of X. Then the problems:

$$
\begin{array}{cc}
\min _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in S
\end{array} \text { and } \quad \max _{\mathbf{x}} \quad f(\mathbf{x})
$$

have solution.

INTRODUCTION CONDITIONS OF AN OPTIMUM

EXTREME VALUE THEOREM: let $f(\mathbf{x})$ be a continuous function defined on X and let S be a compact subset of X. Then the problems:

$$
\begin{array}{cc}
\min _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in S
\end{array} \text { and } \quad \max _{\mathbf{x}} \quad f(\mathbf{x})
$$

have solution.

COMPACT: a set S is said to be compact if is closed and bounded

INTRODUCTION CONDITIONS OF AN OPTIMUM

EXTREME VALUE THEOREM: let $f(\mathbf{x})$ be a continuous function defined on X and let S be a compact subset of X. Then the problems:

$$
\begin{array}{cc}
\min _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in S
\end{array} \text { and } \quad \max _{\mathbf{x}} \quad f(\mathbf{x})
$$

have solution.

COMPACT: a set S is said to be compact if is closed and bounded

INTRODUCTION
 CONDITIONS OF AN OPTIMUM

What if the conditions for an optimum are relaxed, i.e. are not met?:
BOUNDEDNESS: The set S is bounded if there exists a number $k<$ ∞ such that the distance of every point in S from the origin is at most k.

INTRODUCTION
 CONDITIONS OF AN OPTIMUM

Example:

- Bounded set: $S=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<1,-10 \leq y<\pi / 2\right\}$
- Unbounded set: $S=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<\infty,-10 \leq y<\pi / 2\right\}$

INTRODUCTION
 CONDITIONS OF AN OPTIMUM

Example:

- Bounded set: $S=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<1,-10 \leq y<\pi / 2\right\}$
- Unbounded set: $S=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<\infty,-10 \leq y<\pi / 2\right\}$

Example:

INTRODUCTION
 CONDITIONS OF AN OPTIMUM

Example:

- Bounded set: $S=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<1,-10 \leq y<\pi / 2\right\}$
- Unbounded set: $S=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<\infty,-10 \leq y<\pi / 2\right\}$

Example:

INTRODUCTION
 CONDITIONS OF AN OPTIMUM

CLOSEDNESS:

- The set S of n-vectors is open if every point in S is an interior point of S.
- The set S of n-vectors is closed if every boundary point of S is a member of S.

INTRODUCTION
 CONDITIONS OF AN OPTIMUM

CLOSEDNESS:

- The set S of n-vectors is open if every point in S is an interior point of S.
- The set S of n-vectors is closed if every boundary point of S is a member of S.

Closed

INTRODUCTION
 CONDITIONS OF AN OPTIMUM

CLOSEDNESS:

- The set S of n-vectors is open if every point in S is an interior point of S.
- The set S of n-vectors is closed if every boundary point of S is a member of S.

Closed

Open

INTRODUCTION
 CONDITIONS OF AN OPTIMUM

CONTINUITY: a function is continuous if $\lim _{x \rightarrow a} f(x)=f(a)$
Example: relaxing continuity

Non-continuous function

Table of Contents

1. Introduction

2. Interior Optima
3. Equality constraints
4. Inequality constraints

INTERIOR OPTIMA

INTRODUCTION

DEFINITION: Let the function $f(\mathbf{x})$ be defined on a set S. A point $x \in S$ is a stationary point of $f(\mathbf{x})$ if $f(\mathbf{x})$ is differentiable and $f_{i}(\mathbf{x})=$ 0 , for $i=1,2, \ldots$.

INTERIOR OPTIMA

INTRODUCTION

DEFINITION: Let the function $f(\mathbf{x})$ be defined on a set S. A point $x \in S$ is a stationary point of $f(\mathbf{x})$ if $f(\mathbf{x})$ is differentiable and $f_{i}(\mathbf{x})=$ 0 , for $i=1,2, \ldots$.

- In the left figure the points $x^{*}, x^{\prime}, x^{\prime \prime}$ are stationary points and extreme points. In the right figure x^{\prime} is a stationary point but not a extreme
- On the left picture b is a extreme point but is not a stationary point

INTERIOR OPTIMA

INTRODUCTION

So, In other words:

1. A stationary point might not be a local maximiser
2. A local maximiser might not be a stationary point

INTERIOR OPTIMA

INTRODUCTION

So, In other words:

1. A stationary point might not be a local maximiser
2. A local maximiser might not be a stationary point

Then why is it interesting if at all?

INTERIOR OPTIMA

INTRODUCTION

So, In other words:

1. A stationary point might not be a local maximiser
2. A local maximiser might not be a stationary point

Then why is it interesting if at all?
The only case in which a local maximiser is not a stationary point is when it is at the boundary of the set. That is, any interior point that is a maximiser must be a stationary point.

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

PROPOSITION: Let $f(\mathbf{x})$ be defined on the set S. If \mathbf{x} is a maximiser in the interior of S and the partial derivatives exist w.r.t. the $i-$ $t h$ variable. Then:

$$
f_{i}(x)=0, \quad \forall i=1, \ldots, n
$$

This result gives a necessary condition for \mathbf{x} to be a maximiser (or a minimiser) of $f(\mathbf{x})$

The condition is obviously not sufficient for a point to be a maximiser (could be minimiser or inflexion point)

The first-derivative is involved, so we refer to the condition as a first-order condition FOC

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

PROOF: Let the point \mathbf{x}^{*} be a local maximiser, then it is clear that $f\left(x_{1}^{*}+h_{1}, \mathbf{x}_{-1}\right) \leq f\left(x_{1}^{*}, \mathbf{x}_{-1}\right)$ for any $\left(x_{1}^{*}+h_{1}, \mathbf{x}_{-1}\right) \in S$, or in other words $f\left(x_{1}^{*}+h_{1}, \mathbf{x}_{-1}\right)-f\left(x_{1}^{*}, \mathbf{x}_{-1}\right) \leq 0$.

- Approaching the point from the right: $h>0 \Rightarrow$ $\lim _{h^{+} \rightarrow 0} \frac{f\left(x_{1}^{*}+h_{1}, \mathbf{x}_{-1}\right)-f\left(x_{1}^{*}, \mathbf{x}_{-1}\right)}{h} \leq 0$
- Approaching the point from the left: $h<0 \Rightarrow$ $\lim _{h^{-} \rightarrow 0} \frac{f\left(x_{1}^{*}+h_{1}, \mathbf{x}_{-1}\right)-f\left(x_{1}^{*}, \mathbf{x}_{-1}\right)}{h} \geq 0$

Because the continuity of $f(x)$, there will be a point on I such that $f^{\prime}(x)=0$

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

The previous proposition give us the sufficient conditions for a point to be a stationary point

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

The previous proposition give us the sufficient conditions for a point to be a stationary point

IF:

- \mathbf{x}^{*} is a maximiser
- x^{*} is in the interior of S
- f_{i} exist $\forall i=1,2, \ldots$

THEN:

- \mathbf{x}^{*} is a Stationary Point, i.e.
$f_{i}^{\prime}\left(\mathbf{x}^{*}\right)=0 \forall i=1,2, \ldots$

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of n-vectors. If the problem

$$
\begin{array}{cc}
\max _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in S
\end{array}
$$

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of n-vectors. If the problem

$$
\begin{array}{cl}
\max _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in S
\end{array}
$$

has solutions, they may be found as follows:

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of n-vectors. If the problem

$$
\begin{array}{cc}
\max _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in S
\end{array}
$$

has solutions, they may be found as follows:

1. Use the FOC to find \mathbf{x}^{*} and evaluate $f\left(\mathbf{x}^{*}\right)$

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of n-vectors. If the problem

$$
\begin{array}{cc}
\max _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in S
\end{array}
$$

has solutions, they may be found as follows:

1. Use the FOC to find \mathbf{x}^{*} and evaluate $f\left(\mathbf{x}^{*}\right)$
2. Along them find the values of the function at the boundary of S

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of n-vectors. If the problem

$$
\begin{array}{cc}
\max _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in S
\end{array}
$$

has solutions, they may be found as follows:

1. Use the FOC to find \mathbf{x}^{*} and evaluate $f\left(\mathbf{x}^{*}\right)$
2. Along them find the values of the function at the boundary of S
3. The largest values of $f\left(\mathbf{x}^{*}\right)$ are the maximisers of f.

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

Example 1: Consider the problem:

$$
\begin{array}{cl}
\max _{x, y} & f(x, y)=-(x-1)^{2}-(y+2)^{2} \\
\text { s.t. } & -\infty<x<\infty \\
& -\infty<y<\infty
\end{array}
$$

The problem does not meet the conditions of the extreme value theorem - $x, y \in(-\infty, \infty)$-so it is not possible to know beforehand if the problem will have a solution.

First order conditions:

$$
\begin{array}{lll}
f_{x}(x, y)=-2(x-1)=0 & \Rightarrow & x^{*}=1 \\
f_{y}(x, y)=-2(y+2)=0 & \Rightarrow & y^{*}=-2
\end{array}
$$

Then, the point $(1,-2)$ is stationary, we do not know yet if it is a maximiser.

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

Example 2: Consider the problem:

$$
\begin{array}{cl}
\max _{x, y} & f(x, y)=(x-1)^{2}+(y-1)^{2} \\
\text { s.t. } & 0 \leq x \leq 2 \\
& -1 \leq y \leq 3
\end{array}
$$

The problem does meet the conditions of the extreme value theorem

- $x, y \in S$ - so it is possible to know beforehand that the problem will have maximum(a) and minimum(a).

First order conditions:

$$
\begin{array}{lll}
f_{x}(x, y)=2(x-1)=0 & \Rightarrow & x^{*}=1 \\
f_{y}(x, y)=2(y-1)=0 & \Rightarrow & y^{*}=1
\end{array}
$$

Then the point $\left(x^{*}, y^{*}\right)=(1,1)$ is stationary, where $f\left(x^{*}, y^{*}\right)=0$

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

Example 2: Continuation:
Now consider the behaviour of the objective function on the boundary of the set S, which is a rectangle:

- Consider $x=0$ and $-1 \leq y \leq 3$ then $f(0, y)=1+(y-1)^{2}$. By the FOC: $f_{y}\left(0, y^{*}\right)=2(y-1)=0 \Rightarrow y=1$ which is in $\operatorname{int}(S)$. Again we look at the boundary points in $\left\{(0, y) \in \mathbb{R}^{2} \mid-1 \leq y \leq 3\right\}$, i.e. the points $(0,-1)$ and $(0,3)$ are the candidates for optima where the value of the function is $f(0,-1)=f(0,3)=5$
- A similar analysis leads to points $(2,-1)$ and $(2,3)$ being candidates for optima and where the function attains $f(2,-1)=$ $f(2,3)=5$
Comparing the values of the function at the stationary points $(1,1)$ and at the boundary points $(0,-1),(0,3),(2,-1)$ and $(2,3)$ we can conclude that the function has 4 solutions.

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

Example 3: Consider the problem:
$\left\{\begin{array}{cc}\max _{x, y} & f(x, y)=x^{2}+y^{2}+y-1 \\ \text { s.t. } & x^{2}+y^{2} \leq 1\end{array}\right.$ and $\left\{\begin{array}{cc}\min _{x, y} & f(x, y)=x^{2}+y^{2}+y-1 \\ \text { s.t. } & x^{2}+y^{2} \leq 1\end{array}\right.$
These problems meet the criteria of the extreme value theorem and hence they have solutions.

FOC:

$$
\left.\begin{array}{c}
f_{x}(x, y)=2 x=0 \Rightarrow x^{*}=0 \\
f_{y}(x, y)=2 y+1=0 \Rightarrow y^{*}=-\frac{1}{2}
\end{array}\right\} \Rightarrow\left(x^{*}, y^{*}\right)=\left(0,-\frac{1}{2}\right)
$$

Then $\left(0,-\frac{1}{2}\right)$ is a stationary point where $f\left(0,-\frac{1}{2}\right)=-\frac{5}{4}$.

INTERIOR OPTIMA

FIRST ORDER CONDITIONS

Example 3: Continuation
Turning to the boundary points we look at points that lay on the boundary, i.e. $x^{2}+y^{2}=1$. Taking this equality into account the problem can be transform:

$$
\begin{array}{ccc}
\text { from } & \max _{x, y} & f(x, y)=x^{2}+y^{2}+y-1 \\
& \text { s.t. } & x^{2}+y^{2} \leq 1 \\
\text { into } & \max _{y} & f(y)=1+y-1=y \\
& \text { s.t. } & 0 \leq y \leq 1
\end{array}
$$

Clearly the minimum of this new problem is at $(1,0)$ and the maximum at $(0,1)$ where the functions attain 0 and 1 respectively.

Comparing the stationary and boundary points we see that the maximum is at $(0,1)$ and the minimum at $\left(0,-\frac{1}{2}\right)$

INTERIOR OPTIMA
 SECOND ORDER CONDITIONS

MATHEMATICAL DETOUR:

Hessian Matrix: it is the matrix of second derivatives of a function

$$
\mathbf{H}(\mathbf{x})=\left(\begin{array}{cccc}
f_{x_{1} x_{1}} & f_{x_{1} x_{2}} & \cdots & f_{x_{1} x_{n}} \\
f_{x_{2} x_{1}} & f_{x_{2} x_{2}} & \cdots & f_{x_{2} x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
f_{x_{m} x_{1}} & f_{x_{m} x_{2}} & \cdots & f_{x_{m} x_{n}}
\end{array}\right)
$$

INTERIOR OPTIMA
 SECOND ORDER CONDITIONS

PROPOSITION: Let $f(\mathbf{x})$ be a twice-differentiable function with continuous partial derivatives and cross partial derivatives, defined on the set S. Suppose that $f_{i}\left(\mathbf{x}^{*}\right)=0, \forall i$ for some \mathbf{x}^{*} in the interior of S (so that \mathbf{x}^{*} is a stationary point of f). Let \mathbf{H} be the Hessian of $f(\mathbf{x})$:

INTERIOR OPTIMA

SECOND ORDER CONDITIONS

PROPOSITION: Let $f(\mathbf{x})$ be a twice-differentiable function with continuous partial derivatives and cross partial derivatives, defined on the set S. Suppose that $f_{i}\left(\mathbf{x}^{*}\right)=0, \forall i$ for some \mathbf{x}^{*} in the interior of S (so that \mathbf{x}^{*} is a stationary point of f). Let \mathbf{H} be the Hessian of $f(\mathbf{x})$:

- If $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is negative definite then \mathbf{x}^{*} is a local maximiser
- If \mathbf{x}^{*} is a local maximiser then $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is negative semi-definite
- If $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is positive definite then \mathbf{x}^{*} is a local minimiser
- If \mathbf{x}^{*} is a local minimiser then $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is positive semi-definite

INTERIOR OPTIMA
 SECOND ORDER CONDITIONS

The previous slide implies that:

- If $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is negative semi-definite Then \mathbf{x}^{*} is either a maximiser or a saddle point
- If $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is positive semi-definite Then \mathbf{x}^{*} is either a minimiser or a saddle point
For this reason the determinant test should be summoned:
- If $\left|\mathbf{H}\left(\mathbf{x}^{*}\right)\right|<0$ Then \mathbf{x}^{*} is a saddle point
- If $\left|\mathbf{H}\left(\mathbf{x}^{*}\right)\right|>0$ and $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is n.s.d. Then \mathbf{x}^{*} is a maximum point
- If $\left|\mathbf{H}\left(\mathbf{x}^{*}\right)\right|>0$ and $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is p.s.d. Then \mathbf{x}^{*} is a minimum point
- If $\left|\mathbf{H}\left(\mathbf{x}^{*}\right)\right|=0$ Then the test is inclusive. Solve by inspection

INTERIOR OPTIMA
 SECOND ORDER CONDITIONS

Exmple using the mesh parameter

INTERIOR OPTIMA

SECOND ORDER CONDITIONS

Example 1: Consider the problem:

$$
\max _{x, y} f(x, y)=x^{3}+y^{3}-3 x y
$$

FOC:

$$
\left.\left.\begin{array}{l}
f_{x}(x, y)=3 x^{2}-3 y=0 \Rightarrow x^{2}=y \\
f_{y}(x, y)=3 y^{2}-3 x=0 \Rightarrow x=y^{2}
\end{array}\right\} \Rightarrow y=y^{4} \text { then } \begin{array}{l}
(x, y)=(0,0) \\
(x, y)=(1,1)
\end{array}\right\}
$$

INTERIOR OPTIMA

SECOND ORDER CONDITIONS

Example 1:

Now the hessian of $f(x, y)$ at (x, y) is:

$$
\mathbf{H}(x, y)=\left(\begin{array}{ll}
6 x & -3 \\
-3 & 6 y
\end{array}\right)
$$

Turning to the hessian test:

1. $|\mathbf{H}(0,0)|=-9<0$ then is a saddle point
2. $|\mathbf{H}(1,1)|=27>0$ also $f_{x x}(1,1)=6$ and $f_{y y}(1,1)=6$ and so the point is a local minimiser

Table of Contents

1. Introduction

2. Interior Optima

3. Equality constraints

4. Inequality constraints

EQUALITY CONSTRAINTS

INTRODUCTION

Example : consider the problem $\max _{x, y} f(x, y)=x y$ s.t. $g(x, y)=c$

EQUALITY CONSTRAINTS

INTRODUCTION

PROPOSITION : let $f(x, y)$ and $g(x, y)$ be continuously differentiable functions of two variables defined on the set S, let c be a number, and assume ($\mathbf{x}^{*}, \mathbf{y}^{*}$) is an interior point of S that solves the problem:

$$
\begin{array}{ccccc}
\max _{x, y} & f(x, y) & \text { or } & \min _{x, y} & f(x, y) \\
\text { s.t. } & g(x, y)=c & & \text { s.t. } & g(x, y)=c
\end{array}
$$

Suppose also that either $g_{x}(x, y) \neq 0$ or $g_{y}(x, y) \neq 0$.

EQUALITY CONSTRAINTS

NECESSARY CONDITIONS

Then there is a unique number λ such that $\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)$ is a stationary point of the Lagrangian:

$$
\mathscr{L}=f(x, y)-\lambda(g(x, y)-c)
$$

That is, $\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)$ satisfies the FOC:

$$
\begin{aligned}
& \mathscr{L}_{x}=f_{x}(x, y)-\lambda g_{x}(x, y)=0 \\
& \mathscr{L}_{y}=f_{y}(x, y)-\lambda g_{y}(x, y)=0 \\
& \mathscr{L}_{\lambda}=g(x, y)-c=0
\end{aligned}
$$

EQUALITY CONSTRAINTS

NECESSARY CONDITIONS

Example 1: Consider the problem:

$$
\begin{aligned}
& \max _{x, y} x y \\
& \text { s.t. } x+y=6
\end{aligned}
$$

Where the objective function $x y$ is defined on the set of all 2 -vectors and the set S is a line, so it is not bounded and the extreme value theorem does not apply.

The lagrangean is:

$$
\mathscr{L}(x, y, \lambda)=x y-\lambda(x+y-6)
$$

EQUALITY CONSTRAINTS

NECESSARY CONDITIONS

Example 1: Continuation: FOC are:

$$
\begin{aligned}
& \mathscr{L}_{x}(x, y, \lambda)=y-\lambda=0 \\
& \mathscr{L}_{y}(x, y, \lambda)=x-\lambda=0 \\
& \mathscr{L}_{\lambda}(x, y, \lambda)=x+y=6
\end{aligned}
$$

These equations have a unique solution $\left(x^{*}, y^{*}, \lambda^{*}\right)=(3,3,3)$. Also we have $g_{x}=1 \neq 0$ and $g_{y}=1 \neq 0, \forall(x, y)$, so if the problem has a solution it must be at $(3,3)$

EQUALITY CONSTRAINTS

NECESSARY CONDITIONS

Example 2: Consider the problem:

$$
\begin{aligned}
& \max _{x, y} x^{2} y \\
& \text { s.t. } 2 x^{2}+y^{2}=3
\end{aligned}
$$

Where the objective function $x y$ is defined on the set of all 2 -vectors and the set S is compact, so the extreme value theorem guaranties a solution.

The Lagrangian is:

$$
\mathscr{L}(x, y, \lambda)=x^{2} y-\lambda\left(2 x^{2}+y^{2}-3\right)
$$

EQUALITY CONSTRAINTS

NECESSARY CONDITIONS

Example 2: Continuation:
FOC are:

$$
\begin{align*}
& \mathscr{L}_{x}(x, y, \lambda)=2 x(y-2 \lambda)=0 \tag{1}\\
& \mathscr{L}_{y}(x, y, \lambda)=x^{2}-2 \lambda y=0 \tag{2}\\
& \mathscr{L}_{\lambda}(x, y, \lambda)=2 x^{2}+y^{2}-3=0 \tag{3}
\end{align*}
$$

To find the solutions to the system of equations notice that to meet the first equation either $x=0$ or $y=2 \lambda$.

EQUALITY CONSTRAINTS

NECESSARY CONDITIONS

Example 2: Continuation:
In turns:

- If $x=0$, then (3) implies $y= \pm \sqrt{3}$ and (2) resulst in $\lambda=0$.
- If $y=2 \lambda$, plugging it into (2): $x^{2}-y^{2}=0 \Leftrightarrow x^{2}=y^{2} \Leftrightarrow x= \pm y$
- If $x=y$, plugging this into (3) results in $3 x^{2}=3 \Leftrightarrow x=\mp 1$ and as a result $y= \pm 1$
- If $x=-y$, plugging this into (3) results in $3 x^{2}=3 \Leftrightarrow x= \pm 1$ and as a result $y=\mp 1$

Then the possible solutions are:

$$
\begin{array}{cc}
(0, \sqrt{3}, 0) \text { with } f(0, \sqrt{3})=0 & (0,-\sqrt{3}, 0) \text { with } f(0,-\sqrt{3})=0 \\
\left(1,1, \frac{1}{2}\right) \text { with } f(1,1)=1 & \left(-1,-1,-\frac{1}{2}\right) \text { with } f(-1,-1)=-1 \\
\left(1,-1,-\frac{1}{2}\right) \text { with } f(1,-1)=-1 & \left(-1,1, \frac{1}{2}\right) \text { with } f(-1,1)=1
\end{array}
$$

EQUALITY CONSTRAINTS

NECESSARY CONDITIONS

Example 2: Continuation:
Now $g_{x}=4 x$ and $g_{y}=2 y$, the only value in which $g_{x}=g_{y}=0$ is $(0,0)$. At this point the constraint is not satisfied, thus the only solutions are the ones that meet the FOC.

Since it is a maximisation problem we can safely conclude that the only solution is $(x, y)=(1,1)$ and $(x, y)=(-1,1)$

EQUALITY CONSTRAINTS

LAGRANGE MULTIPLIERS

INTUITION: the value of the Lagrange multiplier at the solution of the problem is equal to the rate of change in the maximal value of the objective function as the constraint is relaxed.

Example: Consider the problem

$$
\begin{gathered}
\max _{x} x^{2} \\
\text { s.t. } x=c
\end{gathered}
$$

The solution of this problem is obvious: $x=c$. The maximised value of the function is thus c^{2}, so that the derivative of this maximised value with respect to c is $2 c$.

INTERIOR OPTIMA

LAGRANGE MULTIPLIERS

Let's check that the value of the Lagrange multiplier at the solution of the problem is equal to $2 c$. The Lagrangian is:

$$
\mathscr{L}(x)=x^{2}-\lambda(x-c)
$$

so the first-order condition is

$$
2 x-\lambda=0
$$

The constraint is $x=c$, so the pair (x, λ) that satisfies the first-order condition and the constraint is $(c, 2 c)$. Thus we see that indeed λ is equal to the derivative of the maximised value of the function with respect to c.

EQUALITY CONSTRAINTS

SUFFICIENT CONDITIONS

DEFINITION: the determinant $\mathbf{D}\left(x^{*}, y^{*}, \lambda^{*}\right)$ is called the Bordered Hessian of the Lagrangian and takes the following form:

$$
\mathbf{D}\left(x^{*}, y^{*}, \lambda^{*}\right)=\left|\begin{array}{ccc}
\mathscr{L}_{\lambda \lambda} & \mathscr{L}_{\lambda x} & \mathscr{L}_{\lambda y} \\
\mathscr{L}_{x \lambda} & \mathscr{L}_{x x} & \mathscr{L}_{x y} \\
\mathscr{L}_{y \lambda} & \mathscr{L}_{y x} & \mathscr{L}_{y y}
\end{array}\right|=\left|\begin{array}{ccc}
0 & g_{x} & g_{y} \\
g_{x} & f_{x x}-\lambda g_{x x} & f_{x y}-\lambda g_{x y} \\
g_{y} & f_{x y}-\lambda g_{x y} & f_{y y}-\lambda g_{y y}
\end{array}\right|
$$

With this in mind we can state the following result

EQUALITY CONSTRAINTS

SUFFICIENT CONDITIONS

PROPOSITION: Let $f(x, y)$ and $g(x, y)$ be twice differentiable functions of two variables defined on the set S and let c be a number. Suppose that $(x *, y *)$, an interior point of S, and the number λ^{*} satisfy the first-order conditions:

$$
\begin{aligned}
f_{x}\left(x^{*}, y^{*}\right)-\lambda^{*} g_{x}\left(x^{*}, y^{*}\right) & =0 \\
f_{y}\left(x^{*}, y^{*}\right)-\lambda^{*} g_{y}\left(x^{*}, y^{*}\right) & =0 \\
g\left(x^{*}, y^{*}\right) & =c
\end{aligned}
$$

Then:

- If $\mathbf{D}\left(x^{*}, y^{*}, \lambda^{*}\right)>0$ then $\left(x^{*}, y^{*}\right)$ is a local maximiser
- If $\mathbf{D}\left(x^{*}, y^{*}, \lambda^{*}\right)<0$ then $\left(x^{*}, y^{*}\right)$ is a local minimiser

EQUALITY CONSTRAINTS

SUFFICIENT CONDITIONS

Example: Continuation of the previous one in "NECESSARY CONDITIONS":

The possible solutions where worked out:

$$
\begin{array}{cr}
(0, \sqrt{3}, 0) \text { with } f(0, \sqrt{3})=0 & (0,-\sqrt{3}, 0) \text { with } f(0,-\sqrt{3})=0 \\
\left(1,1, \frac{1}{2}\right) \text { with } f(1,1)=1 & \left(-1,-1,-\frac{1}{2}\right) \text { with } f(-1,-1)=-1 \\
\left(1,-1,-\frac{1}{2}\right) \text { with } f(1,-1)=-1 & \left(-1,1, \frac{1}{2}\right) \text { with } f(-1,1)=1
\end{array}
$$

It seems obvious that the points $(1,1)$ and $(-1,1)$ where global maximisers and the points $(1,-1)$ and $(-1,-1)$ where global minimisers.

But what about $(0, \sqrt{3})$ and $(0,-\sqrt{3})$? They are neither optima, are they local optima?

EQUALITY CONSTRAINTS

SUFFICIENT CONDITIONS

Example: Continuation
The determinant of the bordered hessian of the Lagrangian is in general:

$$
\mathbf{D}(x, y, \lambda)=\left|\begin{array}{ccc}
0 & 4 x & 2 y \\
4 x & 2 y-4 \lambda & 2 x \\
2 y & 2 x & -2 \lambda
\end{array}\right|=8\left[2 \lambda\left(2 x^{2}+y^{2}\right)+y\left(4 x^{2}-y^{2}\right)\right]
$$

And at the solutions:

- $|D(0, \sqrt{3}, 0)|=-8 \cdot 3^{\frac{3}{2}}$, and then $(0, \sqrt{3}, 0)$ is a local minimiser
- $|D(0,-\sqrt{3}, 0)|=8 \cdot 3^{\frac{3}{2}}$, and then $(0,-\sqrt{3}, 0)$ is a local maximiser

EQUALITY CONSTRAINTS

n VARIABLES AND m CONSTRAINTS

The Lagrangian method can easily be generalised to a problem of the form:

$$
\begin{aligned}
& \max _{\mathbf{x}} f(\mathbf{x}) \\
& \text { s.t. } g_{j}(\mathbf{x})=c_{j} \text { for } j=1, \ldots, m
\end{aligned}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.
Ending with a problem of n variables and m constraints.
The Lagrangean for this problem is:

$$
\mathscr{L}(\mathbf{x})=f(\mathbf{x})-\sum_{j=1}^{m} \lambda_{j}\left(g_{j}(\mathbf{x})-c_{j}\right)
$$

That is, there is one Lagrange multiplier for each constraint.

EQUALITY CONSTRAINTS

n VARIABLES AND m CONSTRAINTS

DEFINITION: For $j=1, \ldots, m$ let $g_{j}(\mathbf{x})$ be a differentiable function of n variables. The Jacobian Matrix of $\left(g_{1}, \ldots, g_{m}\right)$ at the point x is:

$$
\left(\begin{array}{ccc}
g_{1 x_{1}}(\mathbf{x}) & \ldots & g_{1 x_{n}}(\mathbf{x}) \\
\ldots & \ldots & \ldots \\
g_{m x_{1}}(\mathbf{x}) & \ldots & g_{m x_{n}}(\mathbf{x})
\end{array}\right)
$$

EQUALITY CONSTRAINTS

n VARIABLES AND m CONSTRAINTS

PROPOSITION: Let $f(\mathbf{x})$ and $g_{j}(\mathbf{x})=c_{j}$ for $j=1, \ldots, m$ be continuously differentiable functions of n variables defined on the set S, with $m \leq n$, let c_{j} for $j=1, \ldots, m$ be numbers, and suppose that \mathbf{x}^{*} is an interior point of S that solves the problem:

$$
\begin{aligned}
& \max _{\mathbf{x}} f(\mathbf{x}) \\
& \text { s.t. } g_{j}(\mathbf{x})=c_{j} \text { for } j=1, \ldots, m
\end{aligned}
$$

or the problem

$$
\begin{aligned}
& \min _{\mathbf{x}} f(\mathbf{x}) \\
& \text { s.t. } g_{j}(\mathbf{x})=c_{j} \text { for } j=1, \ldots, m
\end{aligned}
$$

Suppose also that the rank of the Jacobian matrix of $\left(g_{1}, \ldots, g_{m}\right)$ at the point x^{*} is m.

EQUALITY CONSTRAINTS

n VARIABLES AND m CONSTRAINTS

Then there exist unique numbers $\lambda_{1}, \ldots, \lambda_{m}$ such that x^{*} is a stationary point of the Lagrangian function L defined by:

$$
\mathscr{L}(\mathbf{x})=f(\mathbf{x})-\sum_{j=1}^{m} \lambda_{j}\left(g_{j}(\mathbf{x})-c_{j}\right)
$$

That is, \mathbf{x}^{*} satisfies the FOC:

$$
\mathscr{L}_{i}(\mathbf{x})=f_{i}(\mathbf{x})-\sum_{j=1}^{m} \lambda_{j} g_{j i}(\mathbf{x})=0 \text { for } i=1, \ldots, n
$$

In addition, $g_{j}\left(\mathbf{x}^{*}\right)=c_{j}$ for $j=1, \ldots, m$

EQUALITY CONSTRAINTS

n VARIABLES AND m CONSTRAINTS

Example: Consider the problem:

$$
\begin{aligned}
& \min _{x, y, z} x^{2}+y^{2}+z^{2} \\
& \text { s.t. } x+2 y+z=1 \\
& \quad 2 x-y-3 z=4
\end{aligned}
$$

The Lagrangian is:

$$
\mathscr{L}(x, y, z)=x^{2}+y^{2}+z^{2}-\lambda_{1}(x+2 y+z-1)-\lambda_{2}(2 x-y-3 z-4)
$$

This function is convex for any values of λ_{1} and λ_{2}, so that any interior stationary point is a solution of the problem. Further, the rank of the Jacobian matrix is 2 (a fact you can take as given), so any solution of the problem is a stationary point. Thus the set of solutions of the problem coincides with the set of stationary points.

EQUALITY CONSTRAINTS

n VARIABLES AND m CONSTRAINTS
Example: Continuation:
FOC are:

$$
\begin{align*}
2 x-\lambda_{1}-2 \lambda_{2} & =0 \tag{1}\\
2 y-2 \lambda_{1}+\lambda_{2} & =0 \tag{2}\\
2 z-\lambda_{1}+3 \lambda_{2} & =0 \tag{3}\\
x+2 y+z & =1 \tag{4}\\
2 x-y-3 z & =4 \tag{5}
\end{align*}
$$

Solving (1) and (2) for λ_{1} and λ_{2} gives:

$$
\begin{align*}
& \lambda_{1}=\frac{2}{5} x+\frac{4}{5} y \tag{6}\\
& \lambda_{2}=\frac{4}{5} x+\frac{2}{5} y \tag{7}
\end{align*}
$$

EQUALITY CONSTRAINTS

n VARIABLES AND m CONSTRAINTS

Example: Continuation:
Now substitute (6) and (7) into (3) and solve the system of equations:

$$
x=\frac{16}{15}, y=\frac{1}{3}, z=-\frac{11}{15}, \lambda^{1}=\frac{52}{75} \text { and } \lambda^{2}=\frac{54}{75}
$$

Then we can conclude that $(x, y, z)=\left(\frac{15}{16}, \frac{1}{3},-\frac{11}{15}\right)$ is the unique solution to the problem.

EQUALITY CONSTRAINTS

ENVELOPE THEOREM

PROPOSITION: Let $f(\mathbf{x} ; \mathbf{r})$ be a function of n variables, let \mathbf{r} be a h-vector of parameters, and let the n-vector \mathbf{x}^{*} be a maximiser of $f(\mathbf{x} ; \mathbf{r})$. Assume that the partial derivative $f_{n+k}^{\prime}\left(\mathbf{x}^{*}, \mathbf{r}\right)$ (i.e. the partial derivative of $f(\mathbf{x} ; \mathbf{r})$ with respect to $\left.\mathbf{r}_{k}\right)$ at $\left(x^{*}, r\right)$ exists. Define the Value Function $f^{*}(\mathbf{r})$ of k variables by:

$$
f^{*}(\mathbf{r})=\max _{x} f(\mathbf{x} ; \mathbf{r}), \quad \forall r_{k} .
$$

If the partial derivative $f_{k}^{*}(\mathbf{r})$ exists then

$$
f_{k}^{*}(\mathbf{r})=f_{n+k}\left(\mathbf{x}^{*}, \mathbf{r}\right)
$$

For $k=\{1, \ldots, h\}$

EQUALITY CONSTRAINTS

ENVELOPE THEOREM

INTUITION: we might be interested in seeing how the function at the solution $f\left(\mathbf{x}^{*} ; \mathbf{r}\right)$ changes as some parameters \mathbf{r} change.

RESULT: At the optimum only direct effects of the parameters into the function need taking into account, the indirect effects can be neglected since:

$$
\frac{\partial f\left(\mathbf{x}^{*}(\mathbf{r}) ; \mathbf{r}\right)}{\partial r_{k}}=\frac{\partial f\left(\mathbf{x}^{*}(\mathbf{r}) ; \mathbf{r}\right)}{\partial x_{i}^{*}(\mathbf{r})} \cdot \frac{\partial x_{i}^{*}(\mathbf{r})}{\partial r_{k}}+\frac{\partial f^{*}(\mathbf{r})}{\partial r_{k}}
$$

But at the optimum $\frac{\partial f\left(\mathbf{x}^{*} ; \mathbf{r}\right)}{\partial x_{i}^{*}}=0$
Hence the result

EQUALITY CONSTRAINTS

ENVELOPE THEOREM

Example: Consider the following function $f(x ; \mathbf{r})=x^{r_{1}}-r_{2} x$ where $0<r_{1}<1$. Which has a maximisation point at:

$$
x^{*}=\left(\frac{r_{1}}{r_{2}}\right)^{\frac{1}{1-r_{1}}}
$$

It might be interesting to know the effect of r_{1} in the change of the value function. Thus by the envelope theorem:

$$
\frac{\partial f\left(x^{*}(\mathbf{r}) ; \mathbf{r}\right)}{\partial r_{1}}=\left(x^{*}(\mathbf{r})\right)^{r_{1}} \ln x^{*}(r)
$$

or substituting $x^{*}(\mathbf{r})$

$$
\frac{\partial f\left(x^{*}(\mathbf{r}) ; \mathbf{r}\right)}{\partial r_{1}}=\left(\frac{r_{1}}{r_{2}}\right)^{\frac{r_{1}}{1-r_{1}}} \frac{1}{1-r_{1}} \ln \left(\frac{r_{1}}{r_{2}}\right)
$$

Table of Contents

1. Introduction

2. Interior Optima

3. Equality constraints

4. Inequality constraints

INEQUALITY CONSTRAINTS

INTRODUCTION

Example :

Consider the problem

$$
\begin{aligned}
& \max _{x, y} f(x, y) \\
& \text { s.t. } g_{1}(x, y)-c_{1} \leq 0 \\
& g_{2}(x, y)-c_{2} \leq 0 \\
& \quad x \geq 0, y \geq 0
\end{aligned}
$$

INEQUALITY CONSTRAINTS
 INTRODUCTION

Examples:

The constrained is binding
The constrained is not binding

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

DEFINITION: let $f(\mathbf{x})$ and $g_{j}(\mathbf{x})$ be differentiable functions of n variables and let c_{j} for $j=1, \ldots, m$ be numbers. Also define the function \mathscr{L} of n variables as:

$$
\mathscr{L}(\mathbf{x})=f(\mathbf{x})-\sum_{j=1}^{m} \lambda_{j}\left(g_{j}(\mathbf{x})-c_{j}\right) \text { for all } \mathbf{x}
$$

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

The Kuhn-Tucker conditions of the problem:

$$
\max _{\mathbf{x}} f(\mathbf{x}) \text {, s.t. } g_{j}(\mathbf{x})-c_{j} \leq 0 \text { for } j=1, \ldots, m
$$

are:

- $\mathscr{L}_{i}(\mathbf{x})=0$ for $i=1, \ldots, n$
- $\lambda_{j}\left[g_{j}(\mathbf{x})-c_{j}\right]=0$ for $j=1, \ldots, n$
- $\lambda_{j} \geq 0$
- $g_{j}(\mathbf{x}) \leq c_{j}$

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

The SOLVING PROBLEM RECIPE: consider the following problem:

$$
\begin{aligned}
& \max _{\mathbf{x}} f(\mathbf{x}) \\
& \text { s.t. } g_{j}(\mathbf{x}) \leq c_{j} \text { for } j=1, \ldots, m
\end{aligned}
$$

Where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

STEP 1: Write down the Lagrangian

$$
\mathscr{L}(\mathbf{x})=f(\mathbf{x})-\sum_{j=1}^{m} \lambda_{j}\left(g_{j}(\mathbf{x})-c_{j}\right)
$$

With $\lambda_{1}, \ldots, \lambda_{m}$ as the Lagrange multipliers with the m constraints
STEP 2: Equate all the first-order partial derivatives of $\mathscr{L}(\mathbf{x})$ to 0 :

$$
\frac{\partial \mathscr{L}(\mathbf{x})}{\partial x_{i}}=\frac{\partial f(\mathbf{x})}{\partial x_{i}}-\sum_{j=1}^{m} \lambda_{j} \frac{\partial g_{j}(\mathbf{x})}{\partial x_{i}}=0 \quad i=1, \ldots, n
$$

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

STEP 3: Impose the complementary slackness conditions:

$$
\lambda_{j}\left[g_{j}(\mathbf{x})-c_{j}\right]=0, \quad j=1, \ldots, m
$$

where either $\lambda_{j}>0$ or $\lambda_{j}=0$
STEP 4: Require \mathbf{x} to satisfy the constraints:

$$
g_{j}(\mathbf{x}) \leq c_{j}
$$

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

Example :

Consider the problem

$$
\begin{gathered}
\max _{x_{1}, x_{2}}-\left(x_{1}-4\right)^{2}-\left(x_{2}-4\right)^{2} \\
\text { s.t. } x_{1}+x_{2} \leq 4 \\
\quad x_{1}+3 x_{2} \leq 9
\end{gathered}
$$

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

STEP 1: Write down the Lagrangian

$$
\mathscr{L}\left(x_{1}, x_{2}\right)=-\left(x_{1}-4\right)^{2}-\left(x_{2}-4\right)^{2}-\lambda_{1}\left(x_{1}+x_{2}-4\right)-\lambda_{2}\left(x_{1}+3 x_{2}-9\right)
$$

STEP 2: Equate all the first-order partial derivatives of $\mathscr{L}(\mathbf{x})$ to 0 :

$$
\begin{aligned}
& \frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial x_{1}}=-2\left(x_{1}-4\right)-\lambda_{1}-\lambda_{2}=0 \\
& \frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial x_{2}}=-2\left(x_{2}-4\right)-\lambda_{1}-3 \lambda_{2}=0 \\
& \frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial \lambda_{1}}=x_{1}+x_{2}-4=0 \\
& \frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial \lambda_{2}}=x_{1}+3 x_{2}-9=0
\end{aligned}
$$

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

STEP 3: Impose the complementary slackness conditions, in other words try the following four cases:

1. $\lambda_{1}=\lambda_{2}=0$ which implies $x_{1}+x_{2}<4$ and $x_{1}+3 x_{2}<9$
2. $\lambda_{1}>0$ and $\lambda_{2}=0$ which implies $x_{1}+x_{2}=4$ and $x_{1}+3 x_{2}<9$
3. $\lambda_{1}=0$ and $\lambda_{2}>0$ which implies $x_{1}+x_{2}<4$ and $x_{1}+3 x_{2}=9$
4. $\lambda_{1}>0$ and $\lambda_{2}>0$ which implies $x_{1}+x_{2}=4$ and $x_{1}+3 x_{2}=9$

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

CASE 1: $\lambda_{1}=\lambda_{2}=0$ which implies $x_{1}+x_{2}<4$ and $x_{1}+3 x_{2}<9$, None of the constraints are binding and the FOC become:

$$
\left.\begin{array}{l}
\frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial x_{1}}=-2\left(x_{1}-4\right)=0 \\
\frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial x_{2}}=-2\left(x_{2}-4\right)=0
\end{array}\right\} \Rightarrow\left(x_{1}^{*}, x_{2}^{*}\right)=(4,4)
$$

BUT introducing these values into the constrain $x_{1}+x_{2} \leq 4$:

$$
4+4 \leq 4 \text { 亿 }
$$

Hence arriving to a contradiction and being able to discard $(4,4)$

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

CASE 2: $\lambda_{1}>0$ and $\lambda_{2}=0$ which implies $x_{1}+x_{2}=4$ and $x_{1}+3 x_{2}<9$, The first constraint is binding but the sencond is not, the FOC become:

$$
\left.\begin{array}{r}
\frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial x_{1}}=-2\left(x_{1}-4\right)-\lambda_{1}=0 \\
\frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial x_{2}}=-2\left(x_{2}-4\right)-\lambda_{1}=0
\end{array}\right\} \Rightarrow x_{1}=x_{2}, \begin{array}{r}
\frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial \lambda_{1}}=x_{1}+x_{2}-4=0 \tag{2}
\end{array}
$$

Plugging (1) into (2)

$$
x_{1}+x_{1}=4 \Rightarrow x_{1}^{*}=2, x_{2}^{*}=2
$$

Checking the result against the other constraint $x_{1}+3 x_{2} \leq 9$:

$$
2+3 \cdot 2=8 \leq 9
$$

And then the point $(2,2)$ is a candidate for a solution

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

CASE 3: $\lambda_{1}=0$ and $\lambda_{2}>0$ which implies $x_{1}+x_{2}<4$ and $x_{1}+3 x_{2}=9$, The first constraint is not binding but the sencond is, the FOC become:

$$
\begin{align*}
&\left.\begin{array}{rl}
\frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial x_{1}}=-2\left(x_{1}-4\right)-\lambda_{2}=0 & \Rightarrow \lambda_{2}=-2\left(x_{1}-4\right) \\
\frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial x_{2}}=-2\left(x_{2}-4\right)-3 \lambda_{2}=0 & \Rightarrow \lambda_{2}=-\frac{2}{3}\left(x_{2}-4\right)
\end{array}\right\} \\
& \Rightarrow x_{1}=\frac{2}{3} x_{2}-\frac{8}{3} \tag{1}\\
& \frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial \lambda_{1}}= x_{1}+3 x_{2}-9=0 \tag{2}
\end{align*}
$$

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

Plugging (1) into (2)

$$
\frac{2}{3} x_{2}-\frac{8}{3}+3 x_{2}=9 \Rightarrow \frac{10}{3} x_{2}=\frac{19}{3} \Rightarrow x_{2}^{*}=\frac{19}{10} ; x_{1}^{*}=\frac{33}{10}
$$

Checking the result against the other constraint $x_{1}+x_{2} \leq 4$:

$$
\frac{33}{10}+\frac{19}{10}=\frac{52}{10} \leq 4
$$

Hence arriving to a contradiction and being able to discard $\left(\frac{33}{10}, \frac{19}{10}\right)$

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

CASE 4: $\lambda_{1}>0$ and $\lambda_{2}>0$ which implies $x_{1}+x_{2}=4$ and $x_{1}+3 x_{2}=9$, now both constraints are binding, the FOC become:

$$
\begin{aligned}
& \frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial x_{1}}=-2\left(x_{1}-4\right)-\lambda_{1}-\lambda_{2}=0 \\
& \frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial x_{2}}=-2\left(x_{2}-4\right)-\lambda_{1}-3 \lambda_{2}=0 \\
& \frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial \lambda_{1}}=x_{1}+x_{2}-4=0 \\
& \frac{\partial \mathscr{L}\left(x_{1}, x_{2}\right)}{\partial \lambda_{2}}=x_{1}+3 x_{2}-9=0
\end{aligned}
$$

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

Solving the last two equations:

$$
\left.\begin{array}{c}
x_{1}+x_{2}=4 \\
x_{1}+3 x_{2}=9
\end{array}\right\} \Rightarrow\left(x_{1}^{*}, x_{2}^{*}\right)=\left(\frac{3}{2}, \frac{5}{2}\right)
$$

Then the first two equations become:

$$
\left.\begin{array}{c}
5-\lambda_{1}-\lambda_{2}=0 \\
3-\lambda_{1}-3 \lambda_{2}=0
\end{array}\right\} \Rightarrow \lambda_{1}=6 \quad \text { and } \quad \lambda_{2}=-1 \geq 0
$$

Hence arriving to a contradiction and being able discard $\left(\frac{3}{2}, \frac{5}{2}\right)$

INEQUALITY CONSTRAINTS

KUHN-TUCKER CONDITIONS

SOLUTION: so $\left(x_{1}, x_{2}, \lambda_{1}, \lambda_{2}\right)=(2,2,4,0)$ is the single solution of the Kuhn-Tucker conditions. Hence the unique solution of the problem is $\left(x_{1}, x_{2}\right)=(2,2)$

