Optimisation

Rubén Pérez Sanz

Universitat Autònoma de Barcelona

May 14, 2021

Rubén Pérez Sanz Optimisation 1 / 77

Table of Contents

1. Introduction

2. Interior Optima

3. Equality constraints

4. Inequality constraints

Rubén Pérez Sanz Optimisation 2 / 77

Table of Contents

1. Introduction

2. Interior Optima

3. Equality constraints

4. Inequality constraints

Rubén Pérez Sanz Optimisation 3 / 77

INTRODUCTION INTUITION

In economics, agents are assumed to be endowed with a **payoff function**, which is nothing else than an ordering of their preferences over the results of their actions.

Rubén Pérez Sanz Optimisation 4 / 77

INTRODUCTION INTUITION

In economics, agents are assumed to be endowed with a **payoff function**, which is nothing else than an ordering of their preferences over the results of their actions.

At the same time, agents are supposed to take **rational choices**, meaning that they maximised these payoff functions.

Rubén Pérez Sanz Optimisation 4 / 77

INTRODUCTION INTUITION

In economics, agents are assumed to be endowed with a **payoff function**, which is nothing else than an ordering of their preferences over the results of their actions.

At the same time, agents are supposed to take **rational choices**, meaning that they maximised these payoff functions.

For example:

- Consumers are meant to maximise their utility over purchases
- ► Firms are supposed to maximise profits over investments
- Parties maximise votes over programmes
- and so on...

Rubén Pérez Sanz Optimisation 4 / 77

DEFINITION

Let $f(\mathbf{x})$ be a function of many variables defined on a set X and let S be a subset of X. The point $\mathbf{x}^* \in S$ solves the problem

$$\max_{\mathbf{x}} f(\mathbf{x})$$
 subject to $\mathbf{x} \in S$

if

DEFINITION

Let $f(\mathbf{x})$ be a function of many variables defined on a set X and let S be a subset of X. The point $\mathbf{x}^* \in S$ solves the problem

$$\max_{\mathbf{x}} f(\mathbf{x})$$
 subject to $\mathbf{x} \in S$

if

$$f(\mathbf{x}) \le f(\mathbf{x}^*) \quad \forall \mathbf{x} \in S$$

DEFINITION

Let $f(\mathbf{x})$ be a function of many variables defined on a set X and let Sbe a subset of X. The point $\mathbf{x}^* \in S$ solves the problem

$$\max_{\mathbf{x}} f(\mathbf{x})$$
 subject to $\mathbf{x} \in S$

if

$$f(\mathbf{x}) \le f(\mathbf{x}^*) \quad \forall \mathbf{x} \in S$$

In this case we say that \mathbf{x}^* is a **maximiser** of $f(\mathbf{x})$ subject to the constraint $\mathbf{x} \in S$, and that $f(\mathbf{x}^*)$ is the **maximum** (or maximum value) of $f(\mathbf{x})$ subject to the constraint $\mathbf{x} \in S$.

Ontimisation 5 / 77

LOCAL VS GLOBAL

Let $f(\mathbf{x})$ be a function of many variables defined on a set X and let S be a subset of X.

Rubén Pérez Sanz Optimisation 6 / 77

LOCAL VS GLOBAL

Let $f(\mathbf{x})$ be a function of many variables defined on a set X and let S be a subset of X.

The point \mathbf{x}^* is a **local maximiser** of $f(\mathbf{x})$ subject to $\mathbf{x} \in S$ if there is a number $\epsilon > 0$ such that $f(\mathbf{x}) \le f(\mathbf{x}^*)$ for which the distance between \mathbf{x} and \mathbf{x}^* is at most ϵ .

Rubén Pérez Sanz Optimisation 6 / 77

LOCAL VS GLOBAL

Let $f(\mathbf{x})$ be a function of many variables defined on a set X and let S be a subset of X.

The point \mathbf{x}^* is a **local maximiser** of $f(\mathbf{x})$ subject to $\mathbf{x} \in S$ if there is a number $\epsilon > 0$ such that $f(\mathbf{x}) \le f(\mathbf{x}^*)$ for which the distance between \mathbf{x} and \mathbf{x}^* is at most ϵ .

Local maximum around the interval S

Rubén Pérez Sanz Optimisation 6 / 77

INCREASING TRANSFORMATIONS

PROPOSITION: Let $g(\mathbf{z})$ be a strictly increasing function of a single variable, that is:

if
$$\mathbf{z}' > \mathbf{z} \Rightarrow g(\mathbf{z}') > g(\mathbf{z})$$

Optimisation 7 / 77

INCREASING TRANSFORMATIONS

PROPOSITION: Let $g(\mathbf{z})$ be a strictly increasing function of a single variable, that is:

if
$$\mathbf{z}' > \mathbf{z} \Rightarrow g(\mathbf{z}') > g(\mathbf{z})$$

then the set of solutions to the problem:

$$\max_{\mathbf{x}} f(\mathbf{x})$$

 $s.t.$ $\mathbf{x} \in S$ is equal to $\max_{\mathbf{x}} g(f(\mathbf{x}))$
 $s.t.$ $\mathbf{x} \in S$

Rubén Pérez Sanz Optimisation 7 / 77

INCREASING TRANSFORMATIONS

PROPOSITION: Let $g(\mathbf{z})$ be a strictly increasing function of a single variable, that is:

if
$$\mathbf{z}' > \mathbf{z} \Rightarrow g(\mathbf{z}') > g(\mathbf{z})$$

then the set of solutions to the problem:

$$\max_{\mathbf{x}} f(\mathbf{x})$$
 is equal to $\max_{\mathbf{x}} g(f(\mathbf{x}))$

REMARK: This fact is useful since a function $f(\mathbf{x})$ can be transformed in such a way that the resulting function is easier to work with.

Rubén Pérez Sanz Optimisation 7 / 77

INCREASING TRANSFORMATIONS

Example: Consider the function $u(x_1, x_2) = x_1^{\alpha} x_2^{\beta}$

Rubén Pérez Sanz Optimisation 8 / 77

INCREASING TRANSFORMATIONS

Example: Consider the function $u(x_1, x_2) = x_1^{\alpha} x_2^{\beta}$

It might be easier to work with the transformation $v(x_1, x_2) =$ $\ln((u(x_1, x_2)))$

Optimisation 8 / 77

INCREASING TRANSFORMATIONS

Example: Consider the function $u(x_1, x_2) = x_1^{\alpha} x_2^{\beta}$

It might be easier to work with the transformation $v(x_1, x_2) =$ $\ln((u(x_1,x_2)))$

$$v(x_1, x_2) = \alpha \ln x_1 + \beta \ln x_2$$

Optimisation 8 / 77

INTRODUCTION MINIMISATION PROBLEMS

Throughout the previous slides we have only focused on maximisation problems, but what about the **minimisation** ones?

Rubén Pérez Sanz Optimisation 9 / 77

INTRODUCTION MINIMISATION PROBLEMS

Throughout the previous slides we have only focused on maximisation problems, but what about the **minimisation** ones?

As it turns out that any minimisation problem can be converted into one of maximisation flipping upside down the objective function $f(\mathbf{x})$, so that:

Rubén Pérez Sanz Optimisation 9 / 77

INTRODUCTION MINIMISATION PROBLEMS

Throughout the previous slides we have only focused on maximisation problems, but what about the **minimisation** ones?

As it turns out that any minimisation problem can be converted into one of maximisation flipping upside down the objective function $f(\mathbf{x})$, so that:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 is equal to $\max_{\mathbf{x}} -f(\mathbf{x})$ $s.t.$ $\mathbf{x} \in S$

Rubén Pérez Sanz Optimisation 9 / 77

Example:

Minimisation problem

Rubén Pérez Sanz Optimisation 10 / 77

INTRODUCTION MINIMISATION PROBLEMS

Example:

Minimisation problem

Maximisation problem

Rubén Pérez Sanz Optimisation 10 / 77

CONDITIONS OF AN OPTIMUM

EXTREME VALUE THEOREM: let $f(\mathbf{x})$ be a **continuous** function defined on X and let S be a **compact** subset of X. Then the problems:

$$\begin{array}{lll}
\min_{\mathbf{x}} & f(\mathbf{x}) & \max_{\mathbf{x}} & f(\mathbf{x}) \\
s.t. & \mathbf{x} \in S & s.t. & \mathbf{x} \in S
\end{array}$$

have solution.

Rubén Pérez Sanz Optimisation 11 / 77

CONDITIONS OF AN OPTIMUM

EXTREME VALUE THEOREM: let $f(\mathbf{x})$ be a **continuous** function defined on X and let S be a **compact** subset of X. Then the problems:

$$\begin{array}{lll}
\min_{\mathbf{x}} & f(\mathbf{x}) \\
s.t. & \mathbf{x} \in S
\end{array} \quad \text{and} \quad \begin{array}{lll}
\max_{\mathbf{x}} & f(\mathbf{x}) \\
s.t. & \mathbf{x} \in S
\end{array}$$

have solution.

COMPACT: a set *S* is said to be compact if is closed and bounded

Rubén Pérez Sanz Optimisation 11 / 77

CONDITIONS OF AN OPTIMUM

EXTREME VALUE THEOREM: let $f(\mathbf{x})$ be a **continuous** function defined on X and let S be a **compact** subset of X. Then the problems:

$$\begin{array}{lll}
\min_{\mathbf{x}} & f(\mathbf{x}) \\
s.t. & \mathbf{x} \in S
\end{array} \quad \text{and} \quad \begin{array}{lll}
\max_{\mathbf{x}} & f(\mathbf{x}) \\
s.t. & \mathbf{x} \in S
\end{array}$$

have solution.

COMPACT: a set *S* is said to be compact if is closed and bounded

Rubén Pérez Sanz Optimisation 11 / 77

INTRODUCTION CONDITIONS OF AN OPTIMUM

What if the conditions for an optimum are **relaxed**, i.e. are not met?:

BOUNDEDNESS: The set *S* is bounded if there exists a number $k < \infty$ such that the distance of every point in *S* from the origin is at most k.

Rubén Pérez Sanz Optimisation 12 / 77

CONDITIONS OF AN OPTIMUM

Example:

- ► Bounded set: $S = \{(x, y) \in \mathbb{R}^2 | 0 < x < 1, -10 \le y < \pi/2 \}$
- ► Unbounded set: $S = \{(x, y) \in \mathbb{R}^2 | 0 < x < \infty, -10 \le y < \pi/2 \}$

Optimisation 13 / 77

CONDITIONS OF AN OPTIMUM

Example:

- ► Bounded set: $S = \{(x, y) \in \mathbb{R}^2 | 0 < x < 1, -10 \le y < \pi/2 \}$
- ► Unbounded set: $S = \{(x, y) \in \mathbb{R}^2 | 0 < x < \infty, -10 \le y < \pi/2 \}$

Example:

Rubén Pérez Sanz Optimisation 13 / 77

CONDITIONS OF AN OPTIMUM

Example:

- ► Bounded set: $S = \{(x, y) \in \mathbb{R}^2 | 0 < x < 1, -10 \le y < \pi/2 \}$
- ► Unbounded set: $S = \{(x, y) \in \mathbb{R}^2 | 0 < x < \infty, -10 \le y < \pi/2 \}$

Example:

Rubén Pérez Sanz Optimisation 13 / 77

CONDITIONS OF AN OPTIMUM

CLOSEDNESS:

- ► The set *S* of n-vectors is open if every point in *S* is an interior point of S.
- ► The set S of n-vectors is closed if every boundary point of S is a member of S.

Optimisation 14 / 77

CONDITIONS OF AN OPTIMUM

CLOSEDNESS:

- ► The set *S* of n-vectors is open if every point in *S* is an interior point of *S*.
- ► The set *S* of n-vectors is closed if every boundary point of *S* is a member of *S*.

Rubén Pérez Sanz Optimisation 14 / 77

CONDITIONS OF AN OPTIMUM

CLOSEDNESS:

- ► The set *S* of n-vectors is open if every point in *S* is an interior point of *S*.
- ► The set *S* of n-vectors is closed if every boundary point of *S* is a member of *S*.

Rubén Pérez Sanz Optimisation 14 / 77

CONDITIONS OF AN OPTIMUM

CONTINUITY: a function is continuous if $\lim_{x\to a} f(x) = f(a)$

Example: relaxing continuity

Non-continuous function

Rubén Pérez Sanz Optimisation 15 / 77

Table of Contents

1. Introduction

2. Interior Optima

3. Equality constraints

4. Inequality constraints

Rubén Pérez Sanz Optimisation 16 / 77

INTERIOR OPTIMA

INTRODUCTION

DEFINITION: Let the function $f(\mathbf{x})$ be defined on a set S. A point $x \in S$ is a **stationary point** of $f(\mathbf{x})$ if $f(\mathbf{x})$ is differentiable and $f_i(\mathbf{x}) = 0$, for i = 1, 2, ...

Rubén Pérez Sanz Optimisation 17 / 77

INTRODUCTION

DEFINITION: Let the function $f(\mathbf{x})$ be defined on a set S. A point $x \in S$ is a **stationary point** of $f(\mathbf{x})$ if $f(\mathbf{x})$ is differentiable and $f_i(\mathbf{x}) = 0$, for i = 1, 2, ...

- ▶ In the left figure the points x^* , x', x'' are stationary points and extreme points. In the right figure x' is a stationary point but not a extreme
- On the left picture b is a extreme point but is not a stationary point

Rubén Pérez Sanz Optimisation 17 / 77

INTRODUCTION

So, In other words:

- 1. A stationary point might not be a local maximiser
- 2. A local maximiser might not be a stationary point

Optimisation 18 / 77

INTRODUCTION

So, In other words:

- 1. A stationary point might not be a local maximiser
- 2. A local maximiser might not be a stationary point

Then why is it interesting if at all?

Rubén Pérez Sanz Optimisation 18 / 77

INTRODUCTION

So, In other words:

- 1. A stationary point might not be a local maximiser
- 2. A local maximiser might not be a stationary point

Then why is it interesting if at all?

The only case in which a local maximiser is not a stationary point is when it is at the boundary of the set. That is, any **interior point** that is a maximiser must be a stationary point.

Rubén Pérez Sanz Optimisation 18 / 77

FIRST ORDER CONDITIONS

PROPOSITION: Let $f(\mathbf{x})$ be defined on the set S. If \mathbf{x} is a maximiser in the interior of S and the partial derivatives exist w.r.t. the i-th variable. Then:

$$f_i(x) = 0, \quad \forall i = 1, ..., n$$

This result gives a **necessary condition** for \mathbf{x} to be a maximiser (or a minimiser) of $f(\mathbf{x})$

The condition is obviously **not sufficient** for a point to be a maximiser (could be minimiser or inflexion point)

The first-derivative is involved, so we refer to the condition as a **first-order condition FOC**

Rubén Pérez Sanz Optimisation 19 / 77

FIRST ORDER CONDITIONS

PROOF: Let the point \mathbf{x}^* be a local maximiser, then it is clear that $f(x_1^* + h_1, \mathbf{x}_{-1}) \le f(x_1^*, \mathbf{x}_{-1})$ for any $(x_1^* + h_1, \mathbf{x}_{-1}) \in S$, or in other words $f(x_1^* + h_1, \mathbf{x}_{-1}) - f(x_1^*, \mathbf{x}_{-1}) \le 0$.

- ▶ Approaching the point from the right: $h > 0 \Rightarrow$ $\lim_{h^+ \to 0} \frac{f(x_1^* + h_1, \mathbf{x}_{-1}) f(x_1^*, \mathbf{x}_{-1})}{h} \le 0$
- Approaching the point from the left: $h < 0 \Rightarrow \lim_{h^- \to 0} \frac{f(x_1^* + h_1, \mathbf{x}_{-1}) f(x_1^*, \mathbf{x}_{-1})}{h} \ge 0$

Because the continuity of f(x), there will be a point on I such that f'(x) = 0

Rubén Pérez Sanz Optimisation 20 / 77

FIRST ORDER CONDITIONS

The previous proposition give us the sufficient conditions for a point to be a stationary point

Rubén Pérez Sanz Optimisation 21 / 77

FIRST ORDER CONDITIONS

The previous proposition give us the sufficient conditions for a point to be a stationary point

IF:

- ▶ x* is a maximiser
- \triangleright x^* is in the interior of S
- f_i exist $\forall i = 1, 2, ...$

THEN:

► **x*** is a **Stationary Point**, i.e.

$$f_i'(\mathbf{x}^*) = 0 \ \forall i = 1, 2, ...$$

INTERIOR OPTIMA FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Rubén Pérez Sanz Optimisation 22 / 77

FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of n-vectors. If the problem

$$\max_{\mathbf{x}} \quad f(\mathbf{x})$$
s.t. $\mathbf{x} \in S$

Rubén Pérez Sanz Optimisation 22 / 77

FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of n-vectors. If the problem

$$\max_{\mathbf{x}} f(\mathbf{x})$$
s.t. $\mathbf{x} \in S$

has solutions, they may be found as follows:

Rubén Pérez Sanz Optimisation 22 / 77

FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of n-vectors. If the problem

$$\max_{\mathbf{x}} f(\mathbf{x})$$
s.t. $\mathbf{x} \in S$

has solutions, they may be found as follows:

1. Use the **FOC** to find \mathbf{x}^* and evaluate $f(\mathbf{x}^*)$

FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let *f* be a differentiable function of *n* variables and let *S* be a set of *n*-vectors. If the problem

$$\max_{\mathbf{x}} f(\mathbf{x})$$
s.t. $\mathbf{x} \in S$

has solutions, they may be found as follows:

- 1. Use the **FOC** to find \mathbf{x}^* and evaluate $f(\mathbf{x}^*)$
- 2. Along them find the values of the function at the boundary of S

Rubén Pérez Sanz Optimisation 22 / 77

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of n-vectors. If the problem

$$\max_{\mathbf{x}} f(\mathbf{x})$$
s.t. $\mathbf{x} \in S$

has solutions, they may be found as follows:

- 1. Use the **FOC** to find \mathbf{x}^* and evaluate $f(\mathbf{x}^*)$
- 2. Along them find the values of the function at the boundary of *S*
- 3. The largest values of $f(\mathbf{x}^*)$ are the maximisers of f.

FIRST ORDER CONDITIONS

Example 1: Consider the problem:

$$\max_{x,y} \quad f(x,y) = -(x-1)^2 - (y+2)^2$$

$$s.t. \quad -\infty < x < \infty,$$

$$-\infty < y < \infty$$

The problem does not meet the conditions of the extreme value theorem -x, $y \in (-\infty, \infty)$ —so it is not possible to know beforehand if the problem will have a solution.

First order conditions:

$$f_x(x, y) = -2(x - 1) = 0$$
 \Rightarrow $x^* = 1$
 $f_y(x, y) = -2(y + 2) = 0$ \Rightarrow $y^* = -2$

Then, the point (1,-2) is stationary, we do not know yet if it is a maximiser.

Rubén Pérez Sanz Optimisation 23 / 77

FIRST ORDER CONDITIONS

Example 2: Consider the problem:

$$\max_{x,y} \quad f(x,y) = (x-1)^2 + (y-1)^2$$
s.t. $0 \le x \le 2$,
 $-1 \le y \le 3$

The problem does meet the conditions of the extreme value theorem $-x, y \in S$ - so it is possible to know beforehand that the problem will have maximum(a) and minimum(a).

First order conditions:

$$f_x(x, y) = 2(x - 1) = 0$$
 \Rightarrow $x^* = 1$
 $f_y(x, y) = 2(y - 1) = 0$ \Rightarrow $y^* = 1$

Then the point $(x^*, y^*) = (1, 1)$ is stationary, where $f(x^*, y^*) = 0$

Rubén Pérez Sanz Optimisation 24 / 77

FIRST ORDER CONDITIONS

Example 2: Continuation:

Now consider the behaviour of the objective function on the boundary of the set *S*, which is a rectangle:

- Consider x = 0 and $-1 \le y \le 3$ then $f(0, y) = 1 + (y 1)^2$. By the FOC: $f_y(0, y^*) = 2(y 1) = 0 \Rightarrow y = 1$ which is in int(S). Again we look at the boundary points in $\{(0, y) \in \mathbb{R}^2 | -1 \le y \le 3\}$, i.e. the points (0, -1) and (0, 3) are the candidates for optima where the value of the function is f(0, -1) = f(0, 3) = 5
- A similar analysis leads to points (2,-1) and (2,3) being candidates for optima and where the function attains f(2,-1) = f(2,3) = 5

Comparing the values of the function at the stationary points (1,1) and at the boundary points (0,-1),(0,3),(2,-1) and (2,3) we can conclude that the function has 4 solutions.

Rubén Pérez Sanz Optimisation 25 / 77

FIRST ORDER CONDITIONS

Example 3: Consider the problem:

$$\begin{cases} \max_{x,y} & f(x,y) = x^2 + y^2 + y - 1 \\ s.t. & x^2 + y^2 \le 1 \end{cases} \text{ and } \begin{cases} \min_{x,y} & f(x,y) = x^2 + y^2 + y - 1 \\ s.t. & x^2 + y^2 \le 1 \end{cases}$$

These problems meet the criteria of the extreme value theorem and hence they have solutions.

FOC:

$$\begin{cases} f_x(x,y) = 2x = 0 \Rightarrow x^* = 0 \\ f_y(x,y) = 2y + 1 = 0 \Rightarrow y^* = -\frac{1}{2} \end{cases} \Rightarrow (x^*,y^*) = \left(0, -\frac{1}{2}\right)$$

Then $(0, -\frac{1}{2})$ is a stationary point where $f(0, -\frac{1}{2}) = -\frac{5}{4}$.

Optimisation 26 / 77

FIRST ORDER CONDITIONS

Example 3: Continuation

Turning to the boundary points we look at points that lay on the boundary, i.e. $x^2 + y^2 = 1$. Taking this equality into account the problem can be transform:

from
$$\max_{x,y} f(x,y) = x^2 + y^2 + y - 1$$

 $s.t. x^2 + y^2 \le 1$
into $\max_y f(y) = 1 + y - 1 = y$
 $s.t. 0 \le y \le 1$

Clearly the minimum of this new problem is at (1,0) and the maximum at (0,1) where the functions attain 0 and 1 respectively.

Comparing the stationary and boundary points we see that the maximum is at (0,1) and the minimum at $\left(0,-\frac{1}{2}\right)$

Rubén Pérez Sanz Optimisation 27 / 77

SECOND ORDER CONDITIONS

MATHEMATICAL DETOUR:

Hessian Matrix: it is the matrix of second derivatives of a function

$$\mathbf{H}(\mathbf{x}) = \begin{pmatrix} f_{x_1 x_1} & f_{x_1 x_2} & \cdots & f_{x_1 x_n} \\ f_{x_2 x_1} & f_{x_2 x_2} & \cdots & f_{x_2 x_n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_m x_1} & f_{x_m x_2} & \cdots & f_{x_m x_n} \end{pmatrix}$$

Rubén Pérez Sanz Optimisation 28 / 77

SECOND ORDER CONDITIONS

PROPOSITION: Let $f(\mathbf{x})$ be a twice-differentiable function with continuous partial derivatives and cross partial derivatives, defined on the set S. Suppose that $f_i(\mathbf{x}^*) = 0$, $\forall i$ for some \mathbf{x}^* in the interior of S (so that \mathbf{x}^* is a stationary point of f). Let \mathbf{H} be the Hessian of $f(\mathbf{x})$:

Rubén Pérez Sanz Optimisation 29 / 77

SECOND ORDER CONDITIONS

PROPOSITION: Let $f(\mathbf{x})$ be a twice-differentiable function with continuous partial derivatives and cross partial derivatives, defined on the set S. Suppose that $f_i(\mathbf{x}^*) = 0$, $\forall i$ for some \mathbf{x}^* in the interior of S (so that \mathbf{x}^* is a stationary point of f). Let \mathbf{H} be the Hessian of $f(\mathbf{x})$:

- ▶ If $\mathbf{H}(\mathbf{x}^*)$ is negative definite then \mathbf{x}^* is a local maximiser
- ▶ If \mathbf{x}^* is a local maximiser then $\mathbf{H}(\mathbf{x}^*)$ is negative semi-definite
- ► If $\mathbf{H}(\mathbf{x}^*)$ is positive definite then \mathbf{x}^* is a local minimiser
- ▶ If \mathbf{x}^* is a local minimiser then $\mathbf{H}(\mathbf{x}^*)$ is positive semi-definite

Rubén Pérez Sanz Optimisation 29 / 77

SECOND ORDER CONDITIONS

The previous slide implies that:

- ▶ If $\mathbf{H}(\mathbf{x}^*)$ is negative semi-definite Then \mathbf{x}^* is either a maximiser or a saddle point
- ▶ If $\mathbf{H}(\mathbf{x}^*)$ is positive semi-definite Then \mathbf{x}^* is either a minimiser or a saddle point

For this reason the determinant test should be summoned:

- ▶ If $|\mathbf{H}(\mathbf{x}^*)| < 0$ Then \mathbf{x}^* is a saddle point
- ► If $|\mathbf{H}(\mathbf{x}^*)| > 0$ and $\mathbf{H}(\mathbf{x}^*)$ is n.s.d. Then \mathbf{x}^* is a maximum point
- ► If $|\mathbf{H}(\mathbf{x}^*)| > 0$ and $\mathbf{H}(\mathbf{x}^*)$ is p.s.d. Then \mathbf{x}^* is a minimum point
- ► If $|\mathbf{H}(\mathbf{x}^*)| = 0$ Then the test is inclusive. Solve by inspection

Rubén Pérez Sanz Optimisation 30 / 77

SECOND ORDER CONDITIONS

Exmple using the mesh parameter

SECOND ORDER CONDITIONS

Example 1: Consider the problem:

$$\max_{x,y} f(x,y) = x^3 + y^3 - 3xy$$

FOC:

$$\begin{cases} f_x(x,y) = 3x^2 - 3y = 0 \Rightarrow x^2 = y \\ f_y(x,y) = 3y^2 - 3x = 0 \Rightarrow x = y^2 \end{cases} \Rightarrow y = y^4 \text{ then } \begin{cases} (x,y) = (0,0) \\ (x,y) = (1,1) \end{cases}$$

Optimisation 32 / 77

SECOND ORDER CONDITIONS

Example 1:

Now the hessian of f(x, y) at (x, y) is:

$$\mathbf{H}(x,y) = \begin{pmatrix} 6x & -3 \\ -3 & 6y \end{pmatrix}$$

Turning to the hessian test:

- 1. $|\mathbf{H}(0,0)| = -9 < 0$ then is a saddle point
- 2. $|\mathbf{H}(1,1)| = 27 > 0$ also $f_{xx}(1,1) = 6$ and $f_{yy}(1,1) = 6$ and so the point is a local minimiser

Rubén Pérez Sanz Optimisation 33 / 77

Table of Contents

1. Introduction

2. Interior Optima

3. Equality constraints

4. Inequality constraints

Rubén Pérez Sanz Optimisation 34 / 77

EQUALITY CONSTRAINTS INTRODUCTION

Example: consider the problem $\max_{x,y} f(x,y) = xy$ s.t. g(x,y) = c

Rubén Pérez Sanz Optimisation 35 / 77

INTRODUCTION

PROPOSITION: let f(x, y) and g(x, y) be continuously differentiable functions of two variables defined on the set S, let c be a number, and assume $(\mathbf{x}^*, \mathbf{y}^*)$ is an interior point of S that solves the problem:

$$\max_{x,y}$$
 $f(x,y)$ or $\min_{x,y}$ $f(x,y)$ $s.t.$ $g(x,y)=c$

Suppose also that either $g_x(x, y) \neq 0$ or $g_y(x, y) \neq 0$.

Rubén Pérez Sanz Optimisation 36 / 77

NECESSARY CONDITIONS

Then there is a unique number λ such that $(\mathbf{x}^*, \mathbf{v}^*)$ is a stationary point of the **Lagrangian**:

$$\mathcal{L} = f(x, y) - \lambda (g(x, y) - c)$$

That is, $(\mathbf{x}^*, \mathbf{y}^*)$ satisfies the FOC:

$$\mathcal{L}_x = f_x(x,y) - \lambda g_x(x,y) = 0$$

$$\mathcal{L}_y = f_y(x,y) - \lambda g_y(x,y) = 0$$

$$\mathcal{L}_{\lambda}=g(x,y)-c=0$$

Rubén Pérez Sanz Ontimisation 37 / 77

NECESSARY CONDITIONS

Example 1: Consider the problem:

$$\max_{x,y} xy$$

$$s.t. x + y = 6$$

Where the objective function xy is defined on the set of all 2-vectors and the set S is a line, so it is not bounded and the extreme value theorem does not apply.

The lagrangean is:

$$\mathcal{L}(x, y, \lambda) = xy - \lambda(x + y - 6)$$

Rubén Pérez Sanz Optimisation 38 / 77

NECESSARY CONDITIONS

Example 1: Continuation:

FOC are:

$$\mathcal{L}_x(x, y, \lambda) = y - \lambda = 0$$

$$\mathcal{L}_y(x, y, \lambda) = x - \lambda = 0$$

$$\mathcal{L}_{\lambda}(x, y, \lambda) = x + y = 6$$

These equations have a unique solution $(x^*, y^*, \lambda^*) = (3, 3, 3)$. Also we have $g_x = 1 \neq 0$ and $g_y = 1 \neq 0$, $\forall (x, y)$, so if the problem has a solution it must be at (3,3)

Rubén Pérez Sanz Optimisation 39 / 77

NECESSARY CONDITIONS

Example 2: Consider the problem:

$$\max_{x,y} x^2 y$$

$$s.t. 2x^2 + y^2 = 3$$

Where the objective function xy is defined on the set of all 2-vectors and the set S is compact, so the extreme value theorem guaranties a solution.

The Lagrangian is:

$$\mathcal{L}(x, y, \lambda) = x^2 y - \lambda (2x^2 + y^2 - 3)$$

Rubén Pérez Sanz Optimisation 40 / 77

NECESSARY CONDITIONS

Example 2: Continuation:

FOC are:

$$\mathcal{L}_{x}(x, y, \lambda) = 2x(y - 2\lambda) = 0 \tag{1}$$

$$\mathcal{L}_{\gamma}(x, y, \lambda) = x^2 - 2\lambda y = 0 \tag{2}$$

$$\mathcal{L}_{\lambda}(x, y, \lambda) = 2x^2 + y^2 - 3 = 0 \tag{3}$$

To find the solutions to the system of equations notice that to meet the first equation either x = 0 or $y = 2\lambda$.

Rubén Pérez Sanz Optimisation 41 / 77

NECESSARY CONDITIONS

Example 2: Continuation:

In turns:

- ► If x = 0, then (3) implies $y = \pm \sqrt{3}$ and (2) resulst in $\lambda = 0$.
- ► If $y = 2\lambda$, plugging it into (2): $x^2 y^2 = 0 \Leftrightarrow x^2 = y^2 \Leftrightarrow x = \pm y$
 - ► If x = y, plugging this into (3) results in $3x^2 = 3 \Leftrightarrow x = \mp 1$ and as a result $y = \pm 1$
 - ► If x = -y, plugging this into (3) results in $3x^2 = 3 \Leftrightarrow x = \pm 1$ and as a result $y = \pm 1$

Then the possible **solutions** are:

$$(0, \sqrt{3}, 0) \text{ with } f(0, \sqrt{3}) = 0 \qquad (0, -\sqrt{3}, 0) \text{ with } f(0, -\sqrt{3}) = 0$$

$$\left(1, 1, \frac{1}{2}\right) \text{ with } f(1, 1) = 1 \qquad \left(-1, -1, -\frac{1}{2}\right) \text{ with } f(-1, -1) = -1$$

$$\left(1, -1, -\frac{1}{2}\right) \text{ with } f(1, -1) = -1 \qquad \left(-1, 1, \frac{1}{2}\right) \text{ with } f(-1, 1) = 1$$

Rubén Pérez Sanz Optimisation 42 / 77

NECESSARY CONDITIONS

Example 2: Continuation:

Now $g_x = 4x$ and $g_y = 2y$, the only value in which $g_x = g_y = 0$ is (0,0). At this point the constraint is not satisfied, thus the only solutions are the ones that meet the FOC.

Since it is a maximisation problem we can safely conclude that the only solution is (x, y) = (1, 1) and (x, y) = (-1, 1)

Rubén Pérez Sanz Optimisation 43 / 77

LAGRANGE MULTIPLIERS

INTUITION: the value of the **Lagrange multiplier** at the solution of the problem is equal to the rate of change in the maximal value of the objective function as the constraint is relaxed.

Example: Consider the problem

$$\max_{x} x^2$$

$$s.t.x = c$$

The solution of this problem is obvious: x = c. The maximised value of the function is thus c^2 , so that the derivative of this maximised value with respect to c is 2c.

INTERIOR OPTIMA

LAGRANGE MULTIPLIERS

Let's check that the value of the Lagrange multiplier at the solution of the problem is equal to 2c. The Lagrangian is:

$$\mathscr{L}(x) = x^2 - \lambda(x - c)$$

so the first-order condition is

$$2x - \lambda = 0$$

The constraint is x = c, so the pair (x, λ) that satisfies the first-order condition and the constraint is (c, 2c). Thus we see that indeed λ is equal to the derivative of the maximised value of the function with respect to c.

Rubén Pérez Sanz Optimisation 45 / 77

SUFFICIENT CONDITIONS

DEFINITION: the determinant $\mathbf{D}(x^*, y^*, \lambda^*)$ is called the **Bordered Hessian of the Lagrangian** and takes the following form:

$$\mathbf{D}(x^*, y^*, \lambda^*) = \begin{vmatrix} \mathcal{L}_{\lambda\lambda} & \mathcal{L}_{\lambda x} & \mathcal{L}_{\lambda y} \\ \mathcal{L}_{x\lambda} & \mathcal{L}_{xx} & \mathcal{L}_{xy} \\ \mathcal{L}_{y\lambda} & \mathcal{L}_{yx} & \mathcal{L}_{yy} \end{vmatrix} = \begin{vmatrix} 0 & g_x & g_y \\ g_x & f_{xx} - \lambda g_{xx} & f_{xy} - \lambda g_{xy} \\ g_y & f_{xy} - \lambda g_{xy} & f_{yy} - \lambda g_{yy} \end{vmatrix}$$

With this in mind we can state the following result

Rubén Pérez Sanz Optimisation 46 / 77

SUFFICIENT CONDITIONS

PROPOSITION: Let f(x, y) and g(x, y) be twice differentiable functions of two variables defined on the set S and let c be a number. Suppose that (x*, y*), an interior point of S, and the number λ^* satisfy the first-order conditions:

$$f_x(x^*, y^*) - \lambda^* g_x(x^*, y^*) = 0$$

$$f_y(x^*, y^*) - \lambda^* g_y(x^*, y^*) = 0$$

$$g(x^*, y^*) = c$$

Then:

- ► If $\mathbf{D}(x^*, y^*, \lambda^*) > 0$ then (x^*, y^*) is a local maximiser
- If $\mathbf{D}(x^*, y^*, \lambda^*) < 0$ then (x^*, y^*) is a local minimiser

Optimisation 47 / 77

SUFFICIENT CONDITIONS

Example: Continuation of the previous one in "NECESSARY CONDITIONS":

The possible solutions where worked out:

$$(0, \sqrt{3}, 0) \text{ with } f(0, \sqrt{3}) = 0 \qquad (0, -\sqrt{3}, 0) \text{ with } f(0, -\sqrt{3}) = 0$$

$$\left(1, 1, \frac{1}{2}\right) \text{ with } f(1, 1) = 1 \qquad \left(-1, -1, -\frac{1}{2}\right) \text{ with } f(-1, -1) = -1$$

$$\left(1, -1, -\frac{1}{2}\right) \text{ with } f(1, -1) = -1 \qquad \left(-1, 1, \frac{1}{2}\right) \text{ with } f(-1, 1) = 1$$

It seems obvious that the points (1,1) and (-1,1) where global maximisers and the points (1,-1) and (-1,-1) where global minimisers.

But what about $(0, \sqrt{3})$ and $(0, -\sqrt{3})$? They are neither optima, are they local optima?

Rubén Pérez Sanz Optimisation 48 / 77

SUFFICIENT CONDITIONS

Example: Continuation

The determinant of the bordered hessian of the Lagrangian is in general:

$$\mathbf{D}(x, y, \lambda) = \begin{vmatrix} 0 & 4x & 2y \\ 4x & 2y - 4\lambda & 2x \\ 2y & 2x & -2\lambda \end{vmatrix} = 8 \left[2\lambda \left(2x^2 + y^2 \right) + y \left(4x^2 - y^2 \right) \right]$$

And at the solutions:

- ► $|D(0, \sqrt{3}, 0)| = -8 \cdot 3^{\frac{3}{2}}$, and then $(0, \sqrt{3}, 0)$ is a local minimiser
- ► $|D(0, -\sqrt{3}, 0)| = 8 \cdot 3^{\frac{3}{2}}$, and then $(0, -\sqrt{3}, 0)$ is a local maximiser

Optimisation 49 / 77

n VARIABLES AND m CONSTRAINTS

The Lagrangian method can easily be generalised to a problem of the form:

$$\max_{\mathbf{x}} f(\mathbf{x})$$

$$s.t. g_j(\mathbf{x}) = c_j \text{ for } j = 1,..., m$$

where $\mathbf{x} = (x_1, ..., x_n)$.

Ending with a problem of *n* variables and *m* constraints.

The Lagrangean for this problem is:

$$\mathcal{L}(\mathbf{x}) = f(\mathbf{x}) - \sum_{j=1}^{m} \lambda_j \left(g_j(\mathbf{x}) - c_j \right)$$

That is, there is one Lagrange multiplier for each constraint.

Rubén Pérez Sanz Optimisation 50 / 77

n VARIABLES AND m CONSTRAINTS

DEFINITION: For j = 1, ..., m let $g_j(\mathbf{x})$ be a differentiable function of n variables. The **Jacobian Matrix** of $(g_1, ..., g_m)$ at the point x is:

$$\begin{pmatrix} g_{1x_1}(\mathbf{x}) & \dots & g_{1x_n}(\mathbf{x}) \\ \dots & \dots & \dots \\ g_{mx_1}(\mathbf{x}) & \dots & g_{mx_n}(\mathbf{x}) \end{pmatrix}$$

Rubén Pérez Sanz Optimisation 51 / 77

n VARIABLES AND m CONSTRAINTS

PROPOSITION: Let $f(\mathbf{x})$ and $g_j(\mathbf{x}) = c_j$ for j = 1,...,m be continuously differentiable functions of n variables defined on the set S, with $m \le n$, let c_j for j = 1,...,m be numbers, and suppose that \mathbf{x}^* is an interior point of S that solves the problem:

$$\max_{\mathbf{x}} f(\mathbf{x})$$

$$s.t. \ g_j(\mathbf{x}) = c_j \ \text{for} \ j = 1,...,m$$

or the problem

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t. $g_j(\mathbf{x}) = c_j$ for $j = 1, ..., m$

Suppose also that the rank of the Jacobian matrix of $(g_1, ..., g_m)$ at the point x^* is m.

Rubén Pérez Sanz Optimisation 52 / 77

n VARIABLES AND m CONSTRAINTS

Then there exist unique numbers $\lambda_1,...,\lambda_m$ such that x^* is a stationary point of the Lagrangian function L defined by:

$$\mathcal{L}(\mathbf{x}) = f(\mathbf{x}) - \sum_{j=1}^{m} \lambda_j \left(g_j(\mathbf{x}) - c_j \right)$$

That is, \mathbf{x}^* satisfies the FOC:

$$\mathcal{L}_i(\mathbf{x}) = f_i(\mathbf{x}) - \sum_{j=1}^m \lambda_j g_{ji}(\mathbf{x}) = 0 \text{ for } i = 1, ..., n$$

In addition, $g_j(\mathbf{x}^*) = c_j$ for j = 1, ..., m

Rubén Pérez Sanz Optimisation 53 / 77

n VARIABLES AND m CONSTRAINTS

Example: Consider the problem:

$$\min_{x,y,z} x^{2} + y^{2} + z^{2}$$

$$s.t. x + 2y + z = 1$$

$$2x - y - 3z = 4$$

The Lagrangian is:

$$\mathcal{L}(x, y, z) = x^2 + y^2 + z^2 - \lambda_1 (x + 2y + z - 1) - \lambda_2 (2x - y - 3z - 4)$$

This function is convex for any values of λ_1 and λ_2 , so that any interior stationary point is a solution of the problem. Further, the rank of the Jacobian matrix is 2 (a fact you can take as given), so any solution of the problem is a stationary point. Thus the set of solutions of the problem coincides with the set of stationary points.

Rubén Pérez Sanz Optimisation 54 / 77

n VARIABLES AND m CONSTRAINTS

Example: Continuation:

FOC are:

$$2x - \lambda_1 - 2\lambda_2 = 0 \tag{1}$$

$$2\gamma - 2\lambda_1 + \lambda_2 = 0 \tag{2}$$

$$2z - \lambda_1 + 3\lambda_2 = 0 \tag{3}$$

$$x + 2y + z = 1 \tag{4}$$

$$2x - y - 3z = 4 \tag{5}$$

Solving (1) and (2) for λ_1 and λ_2 gives:

$$\lambda_1 = \frac{2}{5}x + \frac{4}{5}y$$

$$\lambda_2 = \frac{4}{5}x + \frac{2}{5}y$$
(6)

$$\lambda_2 = \frac{4}{5}x + \frac{2}{5}y\tag{7}$$

n VARIABLES AND m CONSTRAINTS

Example: Continuation:

Now substitute (6) and (7) into (3) and solve the system of equations:

$$x = \frac{16}{15}$$
, $y = \frac{1}{3}$, $z = -\frac{11}{15}$, $\lambda^1 = \frac{52}{75}$ and $\lambda^2 = \frac{54}{75}$

Then we can conclude that $(x, y, z) = (\frac{15}{16}, \frac{1}{3}, -\frac{11}{15})$ is the unique solution to the problem.

Optimisation 56 / 77

ENVELOPE THEOREM

PROPOSITION: Let $f(\mathbf{x}; \mathbf{r})$ be a function of n variables, let \mathbf{r} be a h-vector of parameters, and let the n-vector \mathbf{x}^* be a maximiser of $f(\mathbf{x}; \mathbf{r})$. Assume that the partial derivative $f'_{n+k}(\mathbf{x}^*, \mathbf{r})$ (i.e. the partial derivative of $f(\mathbf{x}; \mathbf{r})$ with respect to \mathbf{r}_k) at (x^*, r) exists. Define the **Value Function** $f^*(\mathbf{r})$ of k variables by:

$$f^*(\mathbf{r}) = \max_{x} f(\mathbf{x}; \mathbf{r}), \quad \forall r_k.$$

If the partial derivative $f_k^*(\mathbf{r})$ exists then

$$f_k^*(\mathbf{r}) = f_{n+k}(\mathbf{x}^*, \mathbf{r}).$$

For
$$k = \{1, ..., h\}$$

Rubén Pérez Sanz Optimisation 57 / 77

ENVELOPE THEOREM

INTUITION: we might be interested in seeing how the function at the solution $f(\mathbf{x}^*; \mathbf{r})$ changes as some parameters \mathbf{r} change.

RESULT: At the optimum only direct effects of the parameters into the function need taking into account, the indirect effects can be neglected since:

$$\frac{\partial f\left(\mathbf{x}^{*}(\mathbf{r});\mathbf{r}\right)}{\partial r_{k}} = \frac{\partial f\left(\mathbf{x}^{*}(\mathbf{r});\mathbf{r}\right)}{\partial x_{i}^{*}(\mathbf{r})} \cdot \frac{\partial x_{i}^{*}(\mathbf{r})}{\partial r_{k}} + \frac{\partial f^{*}(\mathbf{r})}{\partial r_{k}}$$

But at the optimum $\frac{\partial f(\mathbf{x}^*; \mathbf{r})}{\partial x_i^*} = 0$

Hence the result

Rubén Pérez Sanz Optimisation 58 / 77

ENVELOPE THEOREM

Example: Consider the following function $f(x; \mathbf{r}) = x^{r_1} - r_2 x$ where $0 < r_1 < 1$. Which has a maximisation point at:

$$x^* = \left(\frac{r_1}{r_2}\right)^{\frac{1}{1-r_1}}$$

It might be interesting to know the effect of r_1 in the change of the value function. Thus by the envelope theorem:

$$\frac{\partial f(x^*(\mathbf{r});\mathbf{r})}{\partial r_1} = (x^*(\mathbf{r}))^{r_1} \ln x^*(r)$$

or substituting $x^*(\mathbf{r})$

$$\frac{\partial f\left(x^{*}\left(\mathbf{r}\right);\mathbf{r}\right)}{\partial r_{1}} = \left(\frac{r_{1}}{r_{2}}\right)^{\frac{r_{1}}{1-r_{1}}} \frac{1}{1-r_{1}} \ln\left(\frac{r_{1}}{r_{2}}\right)$$

Rubén Pérez Sanz Optimisation 59 / 77

Table of Contents

1. Introduction

2. Interior Optima

3. Equality constraints

4. Inequality constraints

Rubén Pérez Sanz Optimisation 60 / 77

INTRODUCTION

Example:

Consider the problem

$$\max_{x,y} f(x,y)$$

$$s.t.g_1(x,y) - c_1 \le 0$$

$$g_2(x,y) - c_2 \le 0$$

$$x \ge 0, y \ge 0$$

INTRODUCTION

Examples:

The constrained is binding

The constrained is not binding

Rubén Pérez Sanz Optimisation 62 / 77

KUHN-TUCKER CONDITIONS

DEFINITION: let $f(\mathbf{x})$ and $g_j(\mathbf{x})$ be differentiable functions of n variables and let c_j for j = 1, ..., m be numbers. Also define the function \mathcal{L} of n variables as:

$$\mathcal{L}(\mathbf{x}) = f(\mathbf{x}) - \sum_{j=1}^{m} \lambda_j (g_j(\mathbf{x}) - c_j)$$
 for all \mathbf{x}

Rubén Pérez Sanz Optimisation 63 / 77

KUHN-TUCKER CONDITIONS

The **Kuhn-Tucker conditions** of the problem:

$$\max_{\mathbf{x}} f(\mathbf{x}), \ s.t. \ g_j(\mathbf{x}) - c_j \le 0 \ \text{for} \ j = 1, ..., m$$

are:

- $\mathcal{L}_i(\mathbf{x}) = 0 \text{ for } i = 1, ..., n$
- $\lambda_j [g_j(\mathbf{x}) c_j] = 0 \text{ for } j = 1, ..., n$
- $\lambda_j \ge 0$
- $g_j(\mathbf{x}) \le c_j$

KUHN-TUCKER CONDITIONS

The **SOLVING PROBLEM RECIPE**: consider the following problem:

$$\max_{\mathbf{x}} f(\mathbf{x})$$

$$s.t.g_j(\mathbf{x}) \leq c_j \text{ for } j=1,...,m$$

Where **x** =
$$(x_1, ..., x_n)$$

Rubén Pérez Sanz Optimisation 65 / 77

KUHN-TUCKER CONDITIONS

STEP 1: Write down the Lagrangian

$$\mathcal{L}(\mathbf{x}) = f(\mathbf{x}) - \sum_{j=1}^{m} \lambda_j \left(g_j(\mathbf{x}) - c_j \right)$$

With $\lambda_1, ..., \lambda_m$ as the Lagrange multipliers with the m constraints

STEP 2: Equate all the first-order partial derivatives of $\mathcal{L}(\mathbf{x})$ to 0:

$$\frac{\partial \mathcal{L}(\mathbf{x})}{\partial x_i} = \frac{\partial f(\mathbf{x})}{\partial x_i} - \sum_{j=1}^m \lambda_j \frac{\partial g_j(\mathbf{x})}{\partial x_i} = 0 \quad i = 1, ..., n$$

Rubén Pérez Sanz Optimisation 66 / 77

KUHN-TUCKER CONDITIONS

STEP 3: Impose the complementary slackness conditions:

$$\lambda_j [g_j(\mathbf{x}) - c_j] = 0, \quad j = 1, ..., m$$

where either $\lambda_i > 0$ or $\lambda_i = 0$

STEP 4: Require **x** to satisfy the constraints:

$$g_j(\mathbf{x}) \le c_j$$

KUHN-TUCKER CONDITIONS

Example:

Consider the problem

$$\max_{x_1,x_2} - (x_1 - 4)^2 - (x_2 - 4)^2$$

$$s.t.x_1 + x_2 \le 4$$

$$x_1 + 3x_2 \le 9$$

KUHN-TUCKER CONDITIONS

STEP 1: Write down the Lagrangian

$$\mathcal{L}(x_1, x_2) = -(x_1 - 4)^2 - (x_2 - 4)^2 - \lambda_1 (x_1 + x_2 - 4) - \lambda_2 (x_1 + 3x_2 - 9)$$

STEP 2: Equate all the first-order partial derivatives of $\mathcal{L}(\mathbf{x})$ to 0:

$$\begin{split} \frac{\partial \mathcal{L}(x_1, x_2)}{\partial x_1} &= -2(x_1 - 4) - \lambda_1 - \lambda_2 = 0\\ \frac{\partial \mathcal{L}(x_1, x_2)}{\partial x_2} &= -2(x_2 - 4) - \lambda_1 - 3\lambda_2 = 0\\ \frac{\partial \mathcal{L}(x_1, x_2)}{\partial \lambda_1} &= x_1 + x_2 - 4 = 0\\ \frac{\partial \mathcal{L}(x_1, x_2)}{\partial \lambda_2} &= x_1 + 3x_2 - 9 = 0 \end{split}$$

Rubén Pérez Sanz Optimisation 69 / 77

KUHN-TUCKER CONDITIONS

STEP 3: Impose the complementary slackness conditions, in other words try the following four cases:

- 1. $\lambda_1 = \lambda_2 = 0$ which implies $x_1 + x_2 < 4$ and $x_1 + 3x_2 < 9$
- 2. $\lambda_1 > 0$ and $\lambda_2 = 0$ which implies $x_1 + x_2 = 4$ and $x_1 + 3x_2 < 9$
- 3. $\lambda_1 = 0$ and $\lambda_2 > 0$ which implies $x_1 + x_2 < 4$ and $x_1 + 3x_2 = 9$
- 4. $\lambda_1 > 0$ and $\lambda_2 > 0$ which implies $x_1 + x_2 = 4$ and $x_1 + 3x_2 = 9$

Rubén Pérez Sanz Optimisation 70 / 77

KUHN-TUCKER CONDITIONS

CASE 1: $\lambda_1 = \lambda_2 = 0$ which implies $x_1 + x_2 < 4$ and $x_1 + 3x_2 < 9$, None of the constraints are binding and the FOC become:

$$\frac{\frac{\partial \mathcal{L}(x_1, x_2)}{\partial x_1}}{\frac{\partial \mathcal{L}(x_1, x_2)}{\partial x_2}} = -2(x_1 - 4) = 0$$

$$\Rightarrow (x_1^*, x_2^*) = (4, 4)$$

BUT introducing these values into the constrain $x_1 + x_2 \le 4$:

$$4+4 \le 4$$
 £

Hence arriving to a contradiction and being able to discard (4,4)

Rubén Pérez Sanz Optimisation 71 / 77

KUHN-TUCKER CONDITIONS

CASE 2: $\lambda_1 > 0$ and $\lambda_2 = 0$ which implies $x_1 + x_2 = 4$ and $x_1 + 3x_2 < 9$, The first constraint is binding but the sencond is not, the FOC become:

$$\frac{\partial \mathcal{L}(x_1, x_2)}{\partial x_1} = -2(x_1 - 4) - \lambda_1 = 0 \\
\frac{\partial \mathcal{L}(x_1, x_2)}{\partial x_2} = -2(x_2 - 4) - \lambda_1 = 0$$

$$\Rightarrow x_1 = x_2 \quad (1)$$

$$\frac{\partial \mathcal{L}(x_1, x_2)}{\partial x_1} = x_1 + x_2 - 4 = 0 \quad (2)$$

Plugging (1) into (2)

$$x_1 + x_1 = 4 \Rightarrow x_1^* = 2, x_2^* = 2$$

Checking the result against the other constraint $x_1 + 3x_2 \le 9$:

$$2 + 3 \cdot 2 = 8 \le 9$$

And then the point (2,2) is a candidate for a solution

Rubén Pérez Sanz Optimisation 72 / 77

KUHN-TUCKER CONDITIONS

CASE 3: $\lambda_1 = 0$ and $\lambda_2 > 0$ which implies $x_1 + x_2 < 4$ and $x_1 + 3x_2 = 9$, The first constraint is not binding but the sencond is, the FOC become:

$$\begin{array}{ll} \frac{\partial \mathcal{L}(x_{1},x_{2})}{\partial x_{1}} & = -2(x_{1}-4) - \lambda_{2} = 0 \quad \Rightarrow \lambda_{2} = -2(x_{1}-4) \\ \frac{\partial \mathcal{L}(x_{1},x_{2})}{\partial x_{2}} & = -2(x_{2}-4) - 3\lambda_{2} = 0 \quad \Rightarrow \lambda_{2} = -\frac{2}{3}(x_{2}-4) \\ & \Rightarrow x_{1} = \frac{2}{3}x_{2} - \frac{8}{3} \quad (1) \\ \frac{\partial \mathcal{L}(x_{1},x_{2})}{\partial \lambda_{1}} & = x_{1} + 3x_{2} - 9 = 0 \quad (2) \end{array}$$

Rubén Pérez Sanz Optimisation 73 / 77

KUHN-TUCKER CONDITIONS

Plugging (1) into (2)

$$\frac{2}{3}x_2 - \frac{8}{3} + 3x_2 = 9 \Rightarrow \frac{10}{3}x_2 = \frac{19}{3} \Rightarrow x_2^* = \frac{19}{10}; \ x_1^* = \frac{33}{10}$$

Checking the result against the other constraint $x_1 + x_2 \le 4$:

$$\frac{33}{10} + \frac{19}{10} = \frac{52}{10} \le 4$$
 £

Hence arriving to a contradiction and being able to discard $\left(\frac{33}{10}, \frac{19}{10}\right)$

Optimisation 74 / 77

KUHN-TUCKER CONDITIONS

CASE 4: $\lambda_1 > 0$ and $\lambda_2 > 0$ which implies $x_1 + x_2 = 4$ and $x_1 + 3x_2 = 9$, now both constraints are binding, the FOC become:

$$\begin{split} \frac{\partial \mathcal{L}(x_1, x_2)}{\partial x_1} &= -2(x_1 - 4) - \lambda_1 - \lambda_2 = 0\\ \frac{\partial \mathcal{L}(x_1, x_2)}{\partial x_2} &= -2(x_2 - 4) - \lambda_1 - 3\lambda_2 = 0\\ \frac{\partial \mathcal{L}(x_1, x_2)}{\partial \lambda_1} &= x_1 + x_2 - 4 = 0\\ \frac{\partial \mathcal{L}(x_1, x_2)}{\partial \lambda_2} &= x_1 + 3x_2 - 9 = 0 \end{split}$$

Rubén Pérez Sanz Optimisation 75 / 77

KUHN-TUCKER CONDITIONS

Solving the last two equations:

$$\begin{vmatrix} x_1 + x_2 = 4 \\ x_1 + 3x_2 = 9 \end{vmatrix} \Rightarrow (x_1^*, x_2^*) = \left(\frac{3}{2}, \frac{5}{2}\right)$$

Then the first two equations become:

$$\begin{cases} 5 - \lambda_1 - \lambda_2 = 0 \\ 3 - \lambda_1 - 3\lambda_2 = 0 \end{cases} \Rightarrow \lambda_1 = 6 \quad \text{and} \quad \lambda_2 = -1 \ge 0$$

Hence arriving to a contradiction and being able discard $(\frac{3}{2}, \frac{5}{2})$

Optimisation 76 / 77

KUHN-TUCKER CONDITIONS

SOLUTION: so $(x_1, x_2, \lambda_1, \lambda_2) = (2, 2, 4, 0)$ is the single solution of the Kuhn-Tucker conditions. Hence the unique solution of the problem is $(x_1, x_2) = (2, 2)$

Rubén Pérez Sanz Optimisation 77 / 77