Basic Algebra

Rubén Pérez Sanz

Universitat Autònoma de Barcelona

May 14, 2021

Rubén Pérez Sanz

Basic Algebra

THE EQUATION

- Variable: it is an element representing an unknown value. Example: x, y, z, ... are common ones
- ► **Expression**: it is a statement about of the value of something. Example: *x* = 5
- Equation: An equation is a statement that two expressions are equal.
 - ► **True equation**: when the statement of the equation is true Example: 7 = 3 + 4
 - False equation: when the statement of the equation is false Example: 7 = 5
 - Algebraic equation: if the equation involves dealing with a variable

Example: x + 4 = 7 or $\frac{4}{x} = 2$

Warning: Division into 0 is not defined.

Rubén Pérez Sanz

THE EQUATION

Inequality: it is a statement about if quantity is bigger(or smaller) than other.

• more or equal to: $x \ge a$ $x \ge a$ а • (strictly) more than: x > ax > aа less or equal to: $x \le a$ $x \le a$ а • (strictly) less than: x < ax < aа

THE EQUATION

Warning: when multiplying/dividing by a negative number the direction of inequality changes.

Compound inequality: an inequality that combines two simple inequalities. OR and AND inequalities. They can have 1, infinitely many or none solution.

Combine both with an OR or an AND.

DEFINITION: A set is a collection of of objects which are called elements or members of the set

Examples:

Set of vegetables

 $V = \{$ Aubergine, Couguette, Pepper, ... $\}$

Set of AC²DC members

*I*ACDCI = {Bon Scott, Angus Young, ...}

However some sets cannot be listed a the ones previously shown, because they might have infinitely many elements. Consequently some times sets have to be defined according to a property.

Rubén Pérez Sanz

Example:

The budget set: The consumer is constrained in the quantity of goods that can buy, according to the prices and her wealth, call:

- x_1 : grams of cured ham with price p_{x_1}
- x_2 : kilometers of public tranport with price p_{x_2}
- ▶ Wealth: *w* euros

Then the set of bundles that the consumer can buy feasibly is:

$$\mathscr{B} = \left\{ (x_1, x_2) \in \mathbb{R} : p_{x_1} x_1 + p_{x_2} x_2 = w, \ x_1 \ge 0, \ x_2 \ge 0 \right\}$$

NOTATION:

 $S = \{$ Typical member: defining properties $\}$

Rubén Pérez Sanz

Basic Algebra

SET MEMBERSHIP:

To indicate that an element *x* **belongs to a set** *S*, we write:

 $x \in S$

And we write:

$x \notin S$

To indicate that it does not.

Also it might be interesting to note that a set *Q* is a **subset** of *S*

 $Q \subseteq S$

Rubén Pérez Sanz

Basic Algebra

SET OPERATIONS:

- A union $B: A \cup B = \{x : x \in A \text{ or } x \in B\}$
- A intersection $B: A \cap B = \{x : x \in A, x \in B\}$
- A minus $B: A \setminus B = \{x : x \in A, x \notin B\}$

THE LINEAR EQUATION

Linear equation: equation which graph is a line.

THE LINEAR EQUATION

• **Slope**: it is a measure of the steepness of a line.

- ▶ **Point-Slope form:** $(y-b) = m(x-a), m, a, b \in \mathbb{R}$
- Slope-intercept form: y = mx + b, $m, b \in \mathbb{R}$.
- Standard form: ax + by = c, $a, b, c \in \mathbb{R}$

SYSTEMS OF EQUATIONS

- Systems of equations: A System of Equations is when we have two or more equations working together. For the equations to "work together" they share one or more variables.
- Equivalent systems: systems with the same solutions.

SYSTEM OF EQUATIONS Calculation

Elimination: Find a linear combination of the two equations and subtract one from the other to solve for the variable:

$$ax + by = c$$
$$ax + dy = e$$
$$(b-d) y = c - e$$

 Substitution: solve for one variable in one equation and substitute the result into the other(s).

SYSTEM OF EQUATIONS

Solutions

- Consistent: a system of equations is consistent if it has at least one solution (it can have infinite solutions).
 - **Independent**: a system of linear equations is independent if it has one solution.

One solution. A system of linear equations has one solution when the graphs intersect at a point.

Rubén Pérez Sanz

Basic Algebra

SYSTEM OF EQUATIONS

Solutions

- Consistent: a system of equations is consistent if it has at least one solution.
 - Dependent: a system of linear equations is dependent if it has infinitely many solutions.

Infinite solutions. A system of linear equations has infinite solutions when the graphs are the exact same line.

Rubén Pérez Sanz

Basic Algebra

SYSTEM OF EQUATIONS

Solutions

Inconsistent: a system of equations is inconsistent if it has no solution.

FUNCTIONS

Function: it is a special relationship where each input has a single unique output. It is often written as "f(x)" where x is the input value.

FUNCTIONS INTERVALS

- Interval: It is a set of bounded numbers.
- Types of intervals:
 - *Closed* : { $x \in \mathbb{R} | a \le x \le b$ } or $x \in [a, b]$
 - *Open*: { $x \in \mathbb{R}$ | a < x < b} or $x \in (a, b)$
 - ▶ $Right semiclosed : \{x \in \mathbb{R} | a < x \le b\}$ or $x \in (a, b]$
 - Left semiclosed : $\{x \in \mathbb{R} | a \le x < b\}$ or $x \in [a, b)$
 - Unbounded interval: $\{x \in \mathbb{R} | a \le x \le \infty\}$

FUNCTIONS INTERVALS

- **Domain**: the set of numbers (inputs) for which the function has defined outputs.
- **Co-domain**: the set of values that could possibly come out. The Co-domain is actually part of the definition of the function.
- Range: the set of actual values taken by the function

FUNCTIONS INTERVALS

- ► **Injective (into):** it means that every member of *Y* is matched by a unique member of *X*. So if $x \neq y$ then $f(x) \neq f(y)$
- Surjective (onto): means that every Y has at least one matching X (maybe more than one). f(X) = Y
- Bijective (One-to-one correspondence): Bijective means having both properties, Injective and Surjective, together. This property is important because it means that the function is invertible

NOTE: These are properties that functions have or do not have, it is not a way of classifying functions.

FUNCTIONS CHARACTERISTICS

- Extrema: maxima and minima considered collectively
- Local maximum (minimum): The height of the function at a point is greater (smaller) than the height anywhere else in that interval around a.
- Global maximum (minimum): The maximum or minimum over the entire function is called an "Absolute" or "Global" maximum or minimum

FUNCTIONS CHARACTERISTICS

- Increasing (decreasing) functions: a function is increasing if y increases (decreases) as x increases.
- ▶ positive (negative) functions: a function is positive *y* it is above the horizontal axis, i.e. if *f*(*x*) is positive (negative).

FUNCTIONS CHARACTERISTICS

Average Rate of Change: it is the change of the function per unit of a variable the interval $x \in (a, b)$.

$$ARC = \frac{f(b) - f(a)}{b - a}$$

Combination of functions: As with addition, multiplication, power and exponent of numbers, there can be the same operations defined on functions:

►
$$(f+g)(x) = f(x) + g(x)$$
 ► $(f-g)(x) = f(x) - g(x)$

$$(f \cdot g)(x) = f(x) \cdot g(x) \qquad \qquad \blacktriangleright (f/g)(x) = f(x)/g(x)$$

Warning: the function that is dividing cannot be 0

The domain of the new function will have the restrictions of **both** functions that made it.

Example: https://www.desmos.com/calculator/c1wsn98eoz

Composition of functions: It is applying one function to the results of another.

- $(g \circ f)(x) = g(f(x))$, first apply f(), then apply g()
- You must also respect the domain of the first function
- Some functions can be de-composed into two (or more) simpler functions.

Example:

$$\begin{array}{ll} f(x) &= e^x \\ g(x) &= x^2 + 1 \end{array} \} \quad \Rightarrow \quad \begin{array}{l} f \circ g = e^{x^2 + 1} \\ g \circ f = e^{2x} + 1 \end{array}$$

Shifting functions: A function can be shifted up/down or right/left adding/subtracting a number outside or inside the function respectively.

- Horizontally: g(x) = f(x + a)
- Vertically: g(x) = f(x) + a

Stretching functions: A function can be stretched vertically or horizontally by multiplying/dividing a number outside or inside the function respectively.

- Horizontally: $g(x) = f(x \cdot a)$
- Vertically: $g(x) = f(x) \cdot a$

Reflecting functions: a function can be flipped over the x/y axises by multiplying times -1 outside or inside the function respectively.

- x-axis: g(x) = -f(x)
- y-axis: g(x) = f(-x)

FUNCTIONS INVERSES

Inverse functions: is a function that "reverses" another function: if the function f applied to an input x gives a result of y, then applying its inverse function g to y gives the result x, and vice versa. i.e., $f(x) = y \Leftrightarrow g(y) = x$

- ► Back to the original value: it gets to the point where we started $f(f(x))^{-1} = x$
- Symmetry: the inverse function is symmetric across the y=x line.
- Calculus: solve for x.

FUNCTIONS INVERSES

- Solvability: Sometimes it is not possible to find the inverse of a function because the function cannot be solved for x.
- Invertibility: if each output has a unique input then the function is invertible. the horizontal line test.
- ► Not invertible: when for one value of *y* there exists two of *x*, the function is **not invertible**
- Domain: some functions do not have and inverse but it can be fixed restricting the domain.
- ► Notation: Inverse: $f^{-1}(x)$, reciprocal: $f(x)^{-1} = \frac{1}{f(x)}$, so $f^{-1}(x) \neq f(x)^{-1}$

EXPONENCTIAL

• **Exponential Function:** it is a function of the form:

$$f(x) = b^{tx}$$

- x: Exponent
- t: Periods (complete)
- *b*: Common ratio/base, is the rate of change of the function.

waning: *b* cannot be negative

- Exponential growth and decay:
 - Exponential decay: 0 < b < 1
 - Exponential growth: b > 1

EXPONENCTIAL

Graph:

- Asymptote: Exponential functions have a horizontal asymptote in 0, which can be moved up or down doing suitable transformations.
- ▶ Domain: ℝ
- Range: \mathbb{R}_+ : $(0, \infty)$

LOGARITHM FUNCTION BASICS

• Logarithm Function: it is a function of the form:

 $f(x) = log_b(x)$

- b: base
- x: power/argument

Restrictions:

- b > 0: In an exponential function, the base b is always defined to be positive
- ▶ $b \neq 1$: Assume b = 1, then $1^b = x$, which is not true for any value of $x \neq 1$
- x > 0: Any positive number to any number is positive

Name	Base	Regular Notation	Special Notation
Common	10	$\log_{10}(x)$	$\log(x)$
Natural	е	$\log_e(x)$	ln(x)

Rubén Pérez Sanz

Basic Algebra

LOGARITHM FUNCTION PROPERTIES

 $M = b^x \Leftrightarrow log_b M = x, N = b^y \Leftrightarrow log_b N = y \text{ and } a = b^O \Leftrightarrow log_b a = O$

• Product Rule: $\log_b M \cdot N = \log_b M + \log_b N$.

 $\log_b(M \cdot N) = \log_b(b^x b^y) = \log_b(b^{x+y}) = x + y = \log_b M + \log_b N$

• Quotient Rule: $\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N$

$$\log_b\left(\frac{M}{N}\right) = \log_b\left(\frac{b^x}{b^y}\right) = \log_b(b^{x-y}) = x - y = \log_b M - \log_b N$$

• Power Rule: $\log_b(M^p) = p \cdot \log_b M$

$$\log_b(M^p) = \log_b(\overbrace{M \cdot \ldots \cdot M}^{p \text{ times}}) = p \cdot \log_b M$$

• Change of Base Rule: $\log_b(a) = \frac{\log_x(a)}{\log_x(b)}$

$$\log_b(a) = 0 \Longleftrightarrow b^0 = a \Longrightarrow \log_x b^0 = \log_x a \Longrightarrow 0 \log_x b = \log_x a \Longrightarrow 0 = \frac{\log_x(a)}{\log_x(b)}$$

Basic Algebra

LOGARITHM FUNCTION GRAPH

Graph:

- Asymptote: Exponential functions have a vertical asymptote in 0, which can be moved left or right doing suitable transformations.
- Domain: \mathbb{R}_+ : $(0, \infty)$
- ► Range: ℝ

LOGARITHM vs EXPONENTIAL

Relation logarithm vs exponential:One is the inverse function of the other

 $a = b^x \Leftrightarrow \log_b(a) = x$

https://www.khanacademy.org/math/algebra-home/ alg-exp-and-log/alg-logarithmic-scale/v/ logarithmic-scale

Sequence: it is an ordered list of numbers

- Terms: each number of the sequence
- Pattern: a rule that tells the following number of the list (if it exists)
- ▶ Function: sequences are functions with the caveat $n \in \mathbb{N}$
- Notation: $a(n) = a_n$

SEQUENCE ARITHMETIC

Arithmetic Sequence: a sequence in which the following number is the addition/subtraction of the previous one.

- Common difference: it is the constant difference between consecutive terms
- Recursive formula:

$$\begin{cases} a(1) = a_1\\ a(n) = a(n-1) + b \end{cases}$$

• Explicit formula: a(n) = a(1) + b(n-1)

Geometric Sequence: it is an array of numbers in which each term in the sequence is a fix multiple of the term before.

- ► Common ratio: The constant ratio between two different terms
- Recursive formula:

$$\begin{cases} a(1) = a_1 \\ a(n) = b \cdot a(n-1) \end{cases}$$

• Explicit formula: $a_n = a_1 \cdot b^{n-1}$

SERIES

ARITHMETIC

Series: it is the sum of a sequence Sigma Notation: $\sum_{i=1}^{n} i = 1 + 2 + ... + n$ **Arithmetic Series:** it is the sum of terms of an arithmetic sequence.

$$S_n = \sum_{i=1}^n a_i = \frac{(a_1 + a_n)}{2} \cdot n$$

► Proof:

$$S_{n} = a_{1} + a_{2} + \dots + a_{n}$$

$$S_{n} = a_{n} + a_{n-1} + \dots + a_{1}$$

$$2S_{n} = (a_{1} + a_{n}) + (a_{1} + a_{n}) + \dots + (a_{1} + a_{n}) \Rightarrow$$

$$2S_{n} = (a_{1} + a_{n}) \cdot n \Rightarrow S_{n} = \frac{n \cdot (a_{1} + a_{n})}{2}$$

SERIES GEOMETRIC

Geometric Series: it is the sum of the terms of a geometric sequence.

$$S_n = \sum_{i=1}^n a_1 \cdot r^{n-1}$$

= $a_1 r^0 + a_1 r + a_1 r^2 + \dots + a_1 r^n$
= $a_1 (1 + r + r^2 + \dots + r^n)$
= $a_1 \cdot \frac{1 - r^n}{1 - r}$, for $r < |1|$

SERIES

GEOMETRIC

Geometric Series: it is the sum of the terms of a geometric sequence.

• Proof:
$$1 + r + r^2 + ... + r^n = \frac{1}{1 - r}$$

Let:

$$1 + r + r^{2} + \dots + r^{n} = S_{n}$$
 Multiply by r
r + ... + ... + rⁿ + rⁿ⁺¹ = rS_{n} substract

$$1 \qquad \qquad -r^{n-1} = (1-r)S_n \quad \Rightarrow \quad$$

$$1 - r^{n-1} = (1 - r)S_n \Rightarrow S_n = \frac{1 - r^n}{1 - r}$$

Infinite Geometric Series:(formula) https://upload.wikimedia.org/wikipedia/commons/2/27/Logarithm_GIF.g

Rubén Pérez Sanz

Basic Algebra

41 / 45

THE ZERO

Definition

- Number: 'zero' is a number representing no amount
- Placeholder: it also is a digit indicating there is no quantity. e.g.: 502 ≠ 52 here means there are no tens.

Characteristics:

- It is not negative nor positive
- It is an even number. 0/2 = 0 so there is no remainder
- It is also an idea: if there is nothing to count how can we count it?

THE ZERO PROPERTIES

Property	Example
$a \pm 0 = a$	$4 \pm 0 = 4$
$0 \times / : a = 0$	$0 \times / : 4 = 0$
a/0 = undefined	$4 \times /:0 = undefined$
$0^a = 0 \ (a > 0)$	$0^4 = 0$
$0^0 = indeterminate$	$0^0 = indeterminate$
$0^a = undefined (a < 0)$	$0^{-4} = undefined$
0! = 1	0! = 1

https: //www.mathsisfun.com/numbers/dividing-by-zero.html

INFINITY

- **Definition:** Infinity is something without an end.
- Clarifications:
 - ► Infinity does not grow, it does **not do** anything, it just **is**
 - It is not a real number
 - Infinity is just an idea
- ► Using infinity: Sometimes we can use infinity as if it were a real number, but it is not a real number. e.g.: 1 + ∞ = ∞

INFINITY

Properties	Undefined Operation
L	$0 imes \infty$
$\infty + \infty = \infty$	$\infty - \infty$
$\infty \times \infty = \infty$	∞/∞
$x + \infty = \infty$	∞^0
$x \times \infty = -\infty \ (x < 0)$	1^{∞}