Basic Algebra

Rubén Pérez Sanz

Universitat Autònoma de Barcelona

May 14, 2021

THE EQUATION

- Variable: it is an element representing an unknown value. Example: x, y, z, \ldots are common ones
- Expression: it is a statement about of the value of something. Example: $x=5$
- Equation: An equation is a statement that two expressions are equal.
- True equation: when the statement of the equation is true Example: $7=3+4$
- False equation: when the statement of the equation is false Example: $7=5$
- Algebraic equation: if the equation involves dealing with a variable

$$
\text { Example: } x+4=7 \text { or } \frac{4}{x}=2
$$

Warning: Division into 0 is not defined.

THE EQUATION

Inequality: it is a statement about if quantity is bigger(or smaller) than other.

- more or equal to: $x \geq a$

- (strictly) more than: $x>a$

- less or equal to: $x \leq a$

- (strictly) less than: $x<a$

THE EQUATION

Warning: when multiplying/dividing by a negative number the direction of inequality changes.

Compound inequality: an inequality that combines two simple inequalities. OR and AND inequalities. They can have 1, infinitely many or none solution.

Combine both with an OR or an AND.

SET THEORY

DEFINITION: A set is a collection of of objects which are called elements or members of the set

Examples:

Set of vegetables

$$
V=\{\text { Aubergine, Couguette, Pepper, } . . .\}
$$

Set of AC \leqslant DC members

$$
\{A C D C \neq\{\text { Bon Scott, Angus Young, ... }\}
$$

However some sets cannot be listed a the ones previously shown, because they might have infinitely many elements. Consequently some times sets have to be defined according to a property.

SET THEORY

Example:

The budget set: The consumer is constrained in the quantity of goods that can buy, according to the prices and her wealth, call:

- x_{1} : grams of cured ham with price $p_{x_{1}}$
- x_{2} : kilometers of public tranport with price $p_{x_{2}}$
- Wealth: w euros

Then the set of bundles that the consumer can buy feasibly is:

$$
\mathscr{B}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}: p_{x_{1}} x_{1}+p_{x_{2}} x_{2}=w, x_{1} \geq 0, x_{2} \geq 0\right\}
$$

NOTATION:

$$
S=\{\text { Typical member: defining properties }\}
$$

SET THEORY

SET MEMBERSHIP:

To indicate that an element x belongs to a set S, we write:

$$
x \in S
$$

And we write:

$$
x \notin S
$$

To indicate that it does not.
Also it might be interesting to note that a set Q is a subset of S

$$
Q \subseteq S
$$

SET THEORY

SET OPERATIONS:

- A union $B: A \cup B=\{x: x \in A$ or $x \in B\}$
- A intersection $B: A \cap B=\{x: x \in A, x \in B\}$
- A minus $B: A \backslash B=\{x: x \in A, x \notin B\}$

THE LINEAR EQUATION

Linear equation: equation which graph is a line.

THE LINEAR EQUATION

- Slope: it is a measure of the steepness of a line.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=m
$$

- Point-Slope form: $(y-b)=m(x-a), m, a, b \in \mathbb{R}$
- Slope-intercept form: $y=m x+b, m, b \in \mathbb{R}$.
- Standard form: $a x+b y=c, a, b, c \in \mathbb{R}$

SYSTEMS OF EQUATIONS

- Systems of equations: A System of Equations is when we have two or more equations working together. For the equations to "work together" they share one or more variables.
- Equivalent systems: systems with the same solutions.

SYSTEM OF EQUATIONS

Calculation

- Elimination: Find a linear combination of the two equations and subtract one from the other to solve for the variable:

$$
\begin{gathered}
a x+b y=c \\
\frac{a x+d y=e}{(b-d) y=c-e}
\end{gathered}
$$

- Substitution: solve for one variable in one equation and substitute the result into the other(s).

SYSTEM OF EQUATIONS

Solutions

- Consistent: a system of equations is consistent if it has at least one solution (it can have infinite solutions).
- Independent: a system of linear equations is independent if it has one solution.

SYSTEM OF EQUATIONS

Solutions

- Consistent: a system of equations is consistent if it has at least one solution.
- Dependent: a system of linear equations is dependent if it has infinitely many solutions.

SYSTEM OF EQUATIONS

Solutions

- Inconsistent: a system of equations is inconsistent if it has no solution.

No solution. A system of linear equations has no solution when the graphs are parallel.

FUNCTIONS

Function: it is a special relationship where each input has a single unique output. It is often written as " $f(x)$ " where x is the input value.

FUNCTIONS

INTERVALS

- Interval: It is a set of bounded numbers.
- Types of intervals:
- Closed $:\{x \in \mathbb{R} \mid a \leq x \leq b\}$ or $x \in[a, b]$
- Open $:\{x \in \mathbb{R} \mid a<x<b\}$ or $x \in(a, b)$
- Right-semiclosed $:\{x \in \mathbb{R} \mid a<x \leq b\}$ or $x \in(a, b]$
- Left-semiclosed : $\{x \in \mathbb{R} \mid a \leq x<b\}$ or $x \in[a, b)$
- Unbounded interval: $\{x \in \mathbb{R} \mid a \leq x \leq \infty\}$

FUNCTIONS

INTERVALS

- Domain: the set of numbers (inputs) for which the function has defined outputs.
- Co-domain: the set of values that could possibly come out. The Co-domain is actually part of the definition of the function.
- Range: the set of actual values taken by the function

FUNCTIONS

INTERVALS

- Injective (into): it means that every member of Y is matched by a unique member of X. So if $x \neq y$ then $f(x) \neq f(y)$
- Surjective (onto): means that every Y has at least one matching X (maybe more than one). $f(X)=Y$
- Bijective (One-to-one correspondence): Bijective means having both properties, Injective and Surjective, together. This property is important because it means that the function is invertible

NOTE: These are properties that functions have or do not have, it is not a way of classifying functions.

FUNCTIONS

CHARACTERISTICS

- Extrema: maxima and minima considered collectively
- Local maximum (minimum): The height of the function at a point is greater (smaller) than the height anywhere else in that interval around a.
- Global maximum (minimum): The maximum or minimum over the entire function is called an "Absolute" or "Global" maximum or minimum

FUNCTIONS

CHARACTERISTICS

- Increasing (decreasing) functions: a function is increasing if y increases (decreases) as x increases.
- positive (negative) functions: a function is positive y it is above the horizontal axis, i.e. if $f(x)$ is positive (negative).

FUNCTIONS

CHARACTERISTICS

Average Rate of Change: it is the change of the function per unit of a variable the interval $x \in(a, b)$.

$$
A R C=\frac{f(b)-f(a)}{b-a}
$$

FUNCTIONS

OPERATIONS

Combination of functions: As with addition, multiplication, power and exponent of numbers, there can be the same operations defined on functions:

$$
\begin{array}{ll}
-(f+g)(x)=f(x)+g(x) & \bullet(f-g)(x)=f(x)-g(x) \\
\bullet(f \cdot g)(x)=f(x) \cdot g(x) & \bullet(f / g)(x)=f(x) / g(x)
\end{array}
$$

Warning: the function that is dividing cannot be 0
The domain of the new function will have the restrictions of both functions that made it.

Example: https://www.desmos.com/calculator/c1wsn98eoz

FUNCTIONS

OPERATIONS

Composition of functions: It is applying one function to the results of another.

- $(g \circ f)(x)=g(f(x))$, first apply $f()$, then apply $g()$
- You must also respect the domain of the first function
- Some functions can be de-composed into two (or more) simpler functions.

Example:

$$
\left.\begin{array}{l}
f(x)=e^{x} \\
g(x)=x^{2}+1
\end{array}\right\} \Rightarrow \quad \begin{gathered}
f \circ g=e^{x^{2}+1} \\
g \circ f=e^{2 x}+1
\end{gathered}
$$

FUNCTIONS

OPERATIONS

Shifting functions: A function can be shifted up/down or right/left adding/subtracting a number outside or inside the function respectively.

- Horizontally: $g(x)=f(x+a)$
- Vertically: $g(x)=f(x)+a$

FUNCTIONS

OPERATIONS

Stretching functions: A function can be stretched vertically or horizontally by multiplying/dividing a number outside or inside the function respectively.

- Horizontally: $g(x)=f(x \cdot a)$
- Vertically: $g(x)=f(x) \cdot a$

FUNCTIONS

OPERATIONS

Reflecting functions: a function can be flipped over the x / y axises by multiplying times -1 outside or inside the function respectively.

- x-axis: $g(x)=-f(x)$
- y-axis: $g(x)=f(-x)$

FUNCTIONS

INVERSES

Inverse functions: is a function that "reverses" another function: if the function f applied to an input x gives a result of y, then applying its inverse function g to y gives the result x , and vice versa. i.e., $f(x)=y \Leftrightarrow g(y)=x$

- Back to the original value: it gets to the point where we started $f(f(x))^{-1}=x$
- Symmetry: the inverse function is symmetric across the $\mathrm{y}=\mathrm{x}$ line.
- Calculus: solve for x .

FUNCTIONS

INVERSES

- Solvability: Sometimes it is not possible to find the inverse of a function because the function cannot be solved for x .
- Invertibility: if each output has a unique input then the function is invertible. the horizontal line test.
- Not invertible: when for one value of y there exists two of x, the function is not invertible
- Domain: some functions do not have and inverse but it can be fixed restricting the domain.
- Notation: Inverse: $f^{-1}(x)$, reciprocal: $f(x)^{-1}=\frac{1}{f(x)}$, so $f^{-1}(x) \neq f(x)^{-1}$

EXPONENCTIAL

- Exponential Function: it is a function of the form:

$$
f(x)=b^{t x}
$$

- x : Exponent
- t : Periods (complete)
- b : Common ratio/base, is the rate of change of the function.
waning: b cannot be negative
- Exponential growth and decay:
- Exponential decay: $0<b<1$
- Exponential growth: $b>1$

EXPONENCTIAL

Graph:

- Asymptote: Exponential functions have a horizontal asymptote in 0 , which can be moved up or down doing suitable transformations.
- Domain: \mathbb{R}
- Range: $\mathbb{R}_{+}:(0, \infty)$

LOGARITHM FUNCTION

BASICS

- Logarithm Function: it is a function of the form:

$$
f(x)=\log _{b}(x)
$$

- b: base
- x : power/argument
- Restrictions:
- $b>0$: In an exponential function, the base b is always defined to be positive
- $b \neq 1$: Assume $b=1$, then $1^{b}=x$, which is not true for any value of $x \neq 1$
- $x>0$: Any positive number to any number is positive

Name	Base	Regular Notation	Special Notation
Common	10	$\log _{10}(x)$	$\log (x)$
Natural	e	$\log _{e}(x)$	$\ln (x)$

LOGARITHM FUNCTION

PROPERTIES

$M=b^{x} \Leftrightarrow \log _{b} M=x, N=b^{y} \Leftrightarrow \log _{b} N=y$ and $a=b^{O} \Leftrightarrow \log _{b} a=O$

- Product Rule: $\log _{b} M \cdot N=\log _{b} M+\log _{b} N$.

$$
\log _{b}(M \cdot N)=\log _{b}\left(b^{x} b^{y}\right)=\log _{b}\left(b^{x+y}\right)=x+y=\log _{b} M+\log _{b} N
$$

- Quotient Rule: $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$

$$
\log _{b}\left(\frac{M}{N}\right)=\log _{b}\left(\frac{b^{x}}{b^{y}}\right)=\log _{b}\left(b^{x-y}\right)=x-y=\log _{b} M-\log _{b} N
$$

- Power Rule: $\log _{b}\left(M^{p}\right)=p \cdot \log _{b} M$

$$
\log _{b}\left(M^{p}\right)=\log _{b}(\overbrace{M \cdot \ldots \cdot M}^{p \text { times }})=p \cdot \log _{b} M
$$

- Change of Base Rule: $\log _{b}(a)=\frac{\log _{x}(a)}{\log _{x}(b)}$

$$
\log _{b}(a)=0 \Longleftrightarrow b^{0}=a \Longrightarrow \log _{x} b^{0}=\log _{x} a \Longrightarrow 0 \log _{x} b=\log _{x} a \Longrightarrow 0=\frac{\log _{x}(a)}{\log _{x}(b)}
$$

LOGARITHM FUNCTION

GRAPH

- Graph:
- Asymptote: Exponential functions have a vertical asymptote in 0 , which can be moved left or right doing suitable transformations.
- Domain: $\mathbb{R}_{+}:(0, \infty)$
- Range: \mathbb{R}

LOGARITHM vs EXPONENTIAL

Relation logarithm vs exponential:One is the inverse function of the other

$$
a=b^{x} \Leftrightarrow \log _{b}(a)=x
$$

https://www.khanacademy.org/math/algebra-home/
alg-exp-and-log/alg-logarithmic-scale/v/
logarithmic-scale

SEQUENCE

BASICS

Sequence: it is an ordered list of numbers

- Terms: each number of the sequence
- Pattern: a rule that tells the following number of the list (if it exists)
- Function: sequences are functions with the caveat $n \in \mathbb{N}$
- Notation: $a(n)=a_{n}$

SEQUENCE

ARITHMETIC

Arithmetic Sequence: a sequence in which the following number is the addition/subtraction of the previous one.

- Common difference: it is the constant difference between consecutive terms
- Recursive formula:

$$
\left\{\begin{array}{c}
a(1)=a_{1} \\
a(n)=a(n-1)+b
\end{array}\right.
$$

- Explicit formula: $a(n)=a(1)+b(n-1)$

SEQUENCE

GEOMETRIC

Geometric Sequence: it is an array of numbers in which each term in the sequence is a fix multiple of the term before.

- Common ratio: The constant ratio between two different terms
- Recursive formula:

$$
\left\{\begin{array}{c}
a(1)=a_{1} \\
a(n)=b \cdot a(n-1)
\end{array}\right.
$$

- Explicit formula: $a_{n}=a_{1} \cdot b^{n-1}$

SERIES

ARITHMETIC

Series: it is the sum of a sequence
Sigma Notation: $\sum_{i=1}^{n} i=1+2+\ldots+n$
Arithmetic Series: it is the sum of terms of an arithmetic sequence.

$$
S_{n}=\sum_{i=1}^{n} a_{i}=\frac{\left(a_{1}+a_{n}\right)}{2} \cdot n
$$

- Proof:

$$
\begin{array}{cccccccc}
S_{n}= & a_{1} & + & a_{2} & + & \ldots & + & a_{n} \\
S_{n}= & a_{n} & + & a_{n-1} & + & \ldots & + & a_{1} \\
\hline 2 S_{n}= & \left(a_{1}+a_{n}\right) & + & \left(a_{1}+a_{n}\right) & + & \ldots & + & \left(a_{1}+a_{n}\right)
\end{array} \Rightarrow
$$

SERIES

GEOMETRIC

Geometric Series: it is the sum of the terms of a geometric sequence.

$$
\begin{aligned}
S_{n} & =\sum_{i=1}^{n} a_{1} \cdot r^{n-1} \\
& =a_{1} r^{0}+a_{1} r+a_{1} r^{2}+\ldots+a_{1} r^{n} \\
& =a_{1}\left(1+r+r^{2}+\ldots+r^{n}\right) \\
& =a_{1} \cdot \frac{1-r^{n}}{1-r}, \text { for } r<|1|
\end{aligned}
$$

SERIES

GEOMETRIC

Geometric Series: it is the sum of the terms of a geometric sequence.

- Proof: $1+r+r^{2}+\ldots+r^{n}=\frac{1}{1-r}$

Let:

$$
\begin{array}{rlrlr}
1+r & +r^{2}+\ldots+r^{n} & =S_{n} & & \text { Multiply by } \mathrm{r} \\
r & +\ldots+\ldots+r^{n}+r^{n+1} & =r S_{n} & & \text { substract }
\end{array}
$$

1

$$
\begin{aligned}
-r^{n-1} & =(1-r) S_{n} \quad \Rightarrow \\
1-r^{n-1}=(1-r) S_{n} \Rightarrow S_{n} & =\frac{1-r^{n}}{1-r}
\end{aligned}
$$

Infinite Geometric Series:(formula) https://upload.wikimedia.org/wikipedia/commons/2/27/Logarithm ${ }_{G}$ IF.g

THE ZERO

- Definition
- Number: 'zero' is a number representing no amount
- Placeholder: it also is a digit indicating there is no quantity. e.g.: $502 \neq 52$ here means there are no tens.
- Characteristics:
- It is not negative nor positive
- It is an even number. $0 / 2=0$ so there is no remainder
- It is also an idea: if there is nothing to count how can we count it?

THE ZERO

PROPERTIES

Property	Example
$a \pm 0=a$	$4 \pm 0=4$
$0 \times /: a=0$	$0 \times /: 4=0$
$a / 0=$ undefined	$4 \times /: 0=$ undefined
$0^{a}=0(a>0)$	$0^{4}=0$
$0^{0}=$ indeterminate	$0^{0}=$ indeterminate
$0^{a}=$ undefined $(a<0)$	$0^{-4}=$ undefined
$0!=1$	$0!=1$

https:
//www.mathsisfun.com/numbers/dividing-by-zero.html

INFINITY

- Definition: Infinity is something without an end.
- Clarifications:
- Infinity does not grow, it does not do anything, it just is
- It is not a real number
- Infinity is just an idea
- Using infinity: Sometimes we can use infinity as if it were a real number, but it is not a real number. e.g.: $1+\infty=\infty$

INFINITY

Properties
$\infty+\infty=\infty$
$\infty \times \infty=\infty$
$x+\infty=\infty$
$x \times \infty=-\infty(x<0)$

Undefined Operation

$$
\begin{gathered}
0 \times \infty \\
\infty-\infty \\
\infty / \infty \\
\infty^{0} \\
1^{\infty}
\end{gathered}
$$

