Calculus

Rubén Pérez Sanz

Universitat Autònoma de Barcelona

May 14, 2021

Table of Contents

1. Limits
2. Derivatives
3. Integrals
4. Power Series
5. Multivariate Calculus
6. Implicit Function Theorem
7. Convex and Concave Functions

Table of Contents

1. Limits

2. Derivatives
3. Integrals
4. Power Series
5. Multivariate Calculus
6. Implicit Function Theorem
7. Convex and Concave Functions

LIMITS

INTUITION

Limit Intuition: We can get $f(x)$ as close to L 'as we want' by getting x sufficiently close to a.

Sometimes it is not possible to work out what the value of a function is, it might be indeterminate. So instead we work out the value as we get closer and closer but without actually being 'there'.

LIMITS

INTUITION

Limit Intuition: We can get $f(x)$ as close to L 'as we want' by getting x sufficiently close to a.

Sometimes it is not possible to work out what the value of a function is, it might be indeterminate. So instead we work out the value as we get closer and closer but without actually being 'there'.
$\frac{x^{2}-1}{x-1}=$ undefined for $x=1 \Rightarrow$ but the limit $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$ is defined

LIMITS

- Approach from the left/right: functions need checking the limit from both sides to make sure it actually exists
- Approach from the left: $\lim _{x \rightarrow a^{-}} f(x)$
- Approach from the right: $\lim _{x \rightarrow a^{+}} f(x)$
- Existence: A limit L exists if the limit from the left is the same that the one from the right.

$$
\lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x) \text { for } a \neq \pm \infty
$$

If the function is defined only over an interval, for extrema points it is only needed to check one of the sides.

LIMITS

PROPERTIES

Properties of limits: or limits of combined functions. Now define:

$$
\lim _{x \rightarrow c} f(x)=L \text { and } \lim _{x \rightarrow c} g(x)=M
$$

Then the properties are:

$$
\begin{aligned}
& \lim _{x \rightarrow c} f(x)+g(x)=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)=L+M \\
& \lim _{x \rightarrow c} f(x)-g(x)=\lim _{x \rightarrow c} f(x)-\lim _{x \rightarrow c} g(x)=L-M \\
& \lim _{x \rightarrow c} f(x) \cdot g(x)=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)=L \cdot M \\
& \lim _{x \rightarrow c} f(x) / g(x)=\lim _{x \rightarrow c} f(x) / \lim _{x \rightarrow c} g(x)=L / M \\
& \lim _{x \rightarrow c} k f(x)=k \lim _{x \rightarrow c} f(x)=k \cdot L
\end{aligned}
$$

LIMITS

Unbounded limits (vertical asymptotes): it is encountered when the function $f(x)$ approaches ∞ as x tends to a point:

$$
\lim _{x \rightarrow c} f(x)= \pm \infty
$$

But don't be fooled by the " $=$ ". We cannot actually get to infinity, but in "limit" language the limit is infinity (which is really saying the function is limitless).

LIMITS

Limits at infinity (Horizontal asymptotes): it is the limit of a

 function as x approaches infinity. It is not possible to say what $\frac{1}{\infty}$ is, but it is possible to work out what happens when x gets larger, $\lim _{x \rightarrow \infty} 1 / x=0$- Rational: https://www.khanacademy.org/math/calculus-home/ limits-and-continuity-calc/limits-at-infinity-calc/v/ more-limits-at-infinity
- Radical: https://www.khanacademy.org/math/calculus-home/ limits-and-continuity-calc/limits-at-infinity-calc/v/ limits-with-two-horizontal-asymptotes
- Trigonometric: https://www.khanacademy.org/math/calculus-home/ limits-and-continuity-calc/limits-at-infinity-calc/v/ limit-at-infinity-involving-trig-defined
- Difference: https://www.khanacademy.org/math/calculus-home/ limits-and-continuity-calc/limits-at-infinity-calc/v/ limits-infinity-algebra

Table of Contents

1. Limits

2. Derivatives
3. Integrals
4. Power Series
5. Multivariate Calculus
6. Implicit Function Theorem
7. Convex and Concave Functions

DERIVATIVES

INTUITION

How to calculate the slope of the tangent at $P=\left(x_{0}, y_{0}\right)$

1. Choose a point $P=\left(x_{0}, y_{0}\right)$
2. Select a nearby point $Q=\left(x_{1}, y_{1}\right)$
3. Calculate the slope of the secant line $m_{\text {sec }}$

$$
m_{s e c}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

4. Take the limit as $Q \rightarrow P$

DERIVATIVES

INTUITION

Example: $y=x^{2}$

- Choose $P=\left(x_{0}, y_{0}\right)$
- Select $Q=\left(x_{1}, y_{1}\right)$
- Calculate $m_{\text {sec }}$

$$
m_{s e c}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{x_{1}^{2}-x_{0}^{2}}{x_{1}-x_{0}}
$$

- Take the limit

$$
m=\lim _{P \rightarrow Q} m_{s e c}=\lim _{x_{1} \rightarrow x_{0}} \frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

WARNING!!: at $x_{1}=x_{0}$ the slope is not defined: $m_{s e c}=\frac{0}{0}$, that's why we take the limit.

DERIVATIVES

INTUITION

We must think of x_{1} as coming very close to x_{0} but remaining distinct from it

Solving the limit:

$$
\begin{aligned}
\lim _{x_{1} \rightarrow x_{0}} \frac{y_{1}-y_{0}}{x_{1}-x_{0}} & =\lim _{x_{1} \rightarrow x_{0}} \frac{x_{1}^{2}-x_{0}^{2}}{x_{1}-x_{0}}= \\
& =\lim _{x_{1} \rightarrow x_{0}} \frac{\left(x_{1}+x_{0}\right)\left(x_{1}-x_{0}\right)}{x_{1}-x_{0}}= \\
& =\lim _{x_{1} \rightarrow x_{0}} x_{1}+x_{0}=2 x_{0}
\end{aligned}
$$

DERIVATIVES

DELTA NOTATION

$\Delta x=x_{1}-x_{0}$: is the change in x going form the first value to the second or alternatively: $x_{1}=x_{0}+\Delta x$ adding a small amount to the first value.

Re writing $m_{\text {sec }}$

$$
m_{s e c}=\frac{x_{1}^{2}-x_{0}^{2}}{x_{1}-x_{0}}=\frac{\left(x_{0}+\Delta x\right)^{2}-x_{0}^{2}}{\Delta x}
$$

$x_{1} \rightarrow x_{0}$ is equivalent to $\Delta x \rightarrow 0$

DERIVATIVES

DELTA NOTATION

solving the numerator:

$$
\begin{aligned}
\left(x_{0}+\Delta x\right)^{2}-x_{0} & =x_{0}^{2}+2 x_{0} \Delta x+(\Delta x)^{2}-x_{0}^{2} \\
& =2 x_{0} \Delta x+(\Delta x)^{2} \\
& =\Delta x\left(2 x_{0}+\Delta x\right)
\end{aligned}
$$

And $m_{s e c}$ becomes: $m_{s e c}=2 x_{0}+\Delta x$, taking the limit:

$$
m=\lim _{\Delta x \rightarrow 0} 2 x_{0}+\Delta x=2 x_{0}
$$

DERIVATIVES

DEFINITION

Definition:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Procedure to compute derivatives:

1. write down the difference $f(x+\Delta x)-f(x)$ and simplify it to the point where Δx is a factor
2. Divide by Δx to form the difference quotient: $\frac{f(x+\Delta x)-f(x)}{\Delta x}$
3. Evaluate the limit of the difference quotient as $\Delta x \rightarrow 0$

DERIVATIVES

DEFINITION

Example: $y=x^{3}$
STEP 1:

$$
\begin{aligned}
f(x+\Delta x)-f(x) & =(x+\Delta x)^{3}-x^{3} \\
& =x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}-x^{3} \\
& =3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3} \\
& =\Delta x\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)
\end{aligned}
$$

STEP 2:

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{\Delta x\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)}{\Delta x}=3 x^{2}+3 x \Delta x+(\Delta x)^{2}
$$

STEP 3:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} 3 x^{2}+3 x \Delta x+(\Delta x)^{2}=3 x^{2}
$$

DERIVATIVES

NOTATION

All of these symbols are equivalent:

$$
y^{\prime} \quad \frac{d y}{d x} \quad f^{\prime}(x) \quad \frac{d f(x)}{d x} \quad \frac{d}{d x} f(x) \quad D_{x}(f(x))
$$

Why the fractions?

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

To indicate at a point:

$$
\left.\frac{d y}{d x}\right|_{x=x_{0}}
$$

DERIVATIVES

NOTATION
Why different notation? well...

DERIVATIVES
 NOTATION

Why different notation? well...

DERIVATIVES

COMPUTATION

CONSTANT: $y=c$

$$
\frac{d}{d x} c=0
$$

Proof:

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{c-c}{\Delta x}=0
$$

DERIVATIVES

COMPUTATION

POWER RULE: $y=x^{n}$ for $n \in \mathbb{Z}, n \neq 0$

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Proof:

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{(\Delta x) \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{n}-x^{n}}{\Delta x} \ldots \text { expend }(x+\Delta x)^{n} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\left(x^{n}+n x^{n-1} \Delta x+\cdots n x(\Delta x)^{n-1}+(\Delta x)^{n}\right)-x^{n}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{n x^{n-1} \Delta x+\frac{n(n-1)}{2!} x^{n-2}(\Delta x)^{2}+\cdots n x \Delta x^{n-1}+(\Delta x)^{n}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}\left(n x^{n-1}+\frac{n(n-1)}{2!} x^{n-2} \Delta x+\cdots n x h^{n-2}+(\Delta x)^{n-1}\right) \\
& =n x^{n-1}
\end{aligned}
$$

DERIVATIVES

COMPUTATION

CONSTANT TIMES A FUNCTION: $y=c f(x)$

$$
\frac{d}{d x} c f(x)=c \frac{d}{d x} f(x)=c f^{\prime}(x)
$$

Proof:

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{c f(x+\Delta x)-c f(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{c(f(x+\Delta x)-f(x))}{\Delta x} \\
& =c \lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =c f^{\prime}(x)
\end{aligned}
$$

DERIVATIVES

COMPUTATION

SUM OF FUNCTIONS: $y=f(x)+g(x)$

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

Proof:

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(f(x+\Delta x)+g(x+\Delta x))-(f(x)-g(x))}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{(f(x+\Delta x)-f(x))+(g(x+\Delta x)-g(x))}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x} \\
& =f^{\prime}(x)+g^{\prime}(x)
\end{aligned}
$$

DERIVATIVES

COMPUTATION

PRODUCT RULE: $y=f(x) \cdot g(X)$

$$
\frac{d}{d x}(f(x) \cdot g(x))=\frac{d}{d x} f(x) \cdot g(x)+f(x) \frac{d}{d x} g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Proof:

$$
\begin{aligned}
\frac{d}{d x}[f(x) \cdot g(x)] & = \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) \cdot g(x+\Delta x)-f(x) \cdot g(x)}{\Delta x}= \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) g(x+\Delta x)-f(x+\Delta x) g(x)+f(x+\Delta x) g(x)-f(x) g(x)}{\Delta x}= \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)[g(x+\Delta x)-g(x)]+[f(x+\Delta x)-f(x)] g(x)}{\Delta x}= \\
& =\lim _{\Delta x \rightarrow 0} f(x+\Delta x) \cdot \frac{g(x+\Delta x)-g(x)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \cdot f(x)= \\
& =\underbrace{\lim _{\Delta x \rightarrow 0} f(x+\Delta x)}_{f(x)} \cdot \underbrace{\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x}}_{g^{\prime}(x)}+\underbrace{\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}}_{f^{\prime}(x)} \cdot \underbrace{\lim _{\Delta x \rightarrow 0} g(x)}_{g(x)}= \\
& =f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{aligned}
$$

DERIVATIVES

COMPUTATION

CHAIN RULE: $y=f(g(x))$

$$
\frac{d}{d x} f(g(x))=\frac{d f(x)}{d g(x)} \cdot \frac{d g(x)}{d x}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Proof:

Notice that for a continuous function $g(x)$ at a point:

$$
\text { as } \Delta x \rightarrow 0 \Rightarrow \Delta g(x) \rightarrow 0
$$

Then the result follows:
$\frac{\partial f(g(x))}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta g} \cdot \frac{\Delta g}{\Delta x}=\lim _{\Delta g \rightarrow 0} \frac{\Delta f}{\Delta g} \cdot \lim _{\Delta x \rightarrow 0} \frac{\Delta g}{\Delta x}=\frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial x}$

DERIVATIVES

COMPUTATION

QUOTIENT RULE: $y=\frac{f(x)}{g(X)}$

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{\frac{d}{d x} f(x) \cdot g(x)-f(x) \frac{d}{d x} g(x)}{g(x)^{2}}=\frac{f^{\prime}(x) g(x)+f(x) g^{\prime}(x)}{g(x)^{2}}
$$

Proof:

$$
\text { Notice that } \frac{f(x)}{g(x)}=f(x) \cdot g(x)^{-1}
$$

Apply the product rule, for the second term use the power rule for $g(x)^{-1}$ then apply the chain rule.

DERIVATIVES

IMPLICIT DIFFERENTIATION

Up to now all the functions have been of the form $y=f(x)$
However, it is not always obvious which is the independent variable: $F(x, y)=0$

In these cases it is not straight forward what variable depends on which, but we can just assume that it does and differentiate implicitly.

Example:

$$
\begin{aligned}
x^{2}+y^{2}=25 & \text { Using implicit differentiation w.r.t. } \mathrm{y} \\
2 x \cdot x^{\prime}+2 y=0 & \text { Solving for } \mathrm{x}^{\prime} \\
x^{\prime}=-\frac{y}{x} &
\end{aligned}
$$

DERIVATIVES

IMPLICIT DIFFERENTIATION

Also we can use Implicit differentiation to prove:

$$
\frac{\partial}{\partial x} x^{n}=n x^{n-1} \text { for } n \in \mathbb{Q}
$$

First we have y as a function of $x: y=\boldsymbol{x}^{\boldsymbol{n}}$ where n is a rational number in the form $\boldsymbol{n}=\frac{\boldsymbol{p}}{\boldsymbol{q}}$. so we can write the equation as:

$$
y=x^{\frac{p}{q}} \Leftrightarrow y^{q}=x^{p}
$$

DERIVATIVES

IMPLICIT DIFFERENTIATION

Assuming y depends on x and using implicit differentiation on the second term:

$$
\begin{aligned}
q y^{q-1} \frac{\partial y}{\partial x}=p x^{p-1} & \Leftrightarrow \frac{\partial y}{\partial x}=\frac{p x^{p-1}}{q y^{q-1}} \\
& \Leftrightarrow \frac{\partial y}{\partial x}=\frac{p x^{p-1}}{q\left(x^{\frac{p}{q}}\right)^{q-1}} \\
& \Leftrightarrow \frac{\partial y}{\partial x}=\frac{p x^{p-1}}{q x^{p-\frac{p}{q}}} \\
& \Leftrightarrow \frac{\partial y}{\partial x}=\frac{p}{q} x^{p-1-p+\frac{p}{q}} \\
& \Leftrightarrow \frac{\partial y}{\partial x}=\frac{p}{q} x^{\frac{p}{q}-1}=n x^{n-1}
\end{aligned}
$$

DERIVATIVES
 COMPUTATION

EXPONENTIAL: $y=a^{x}$

$$
\frac{d y}{d x}=a^{x} \ln a
$$

Proof:

Using the definition of derivative:

$$
\frac{d a^{x}}{d x}=\lim _{\Delta x \rightarrow 0} \frac{a^{x+\Delta x}-a^{x}}{\Delta x}=\lim _{\Delta x \rightarrow 0} a^{x} \frac{a^{\Delta x}-1}{\Delta x}=a^{x} \underbrace{\lim _{\Delta x \rightarrow 0} \frac{a^{\Delta x}-1}{\Delta x}}_{M(a)}=a^{x} M(a)
$$

Now let's assume that $\exists!a=e \mid M(e)=1$, Then:

$$
\frac{d}{d x} e^{x}=e^{x} M(e)=e^{x}
$$

DERIVATIVES
 COMPUTATION

LOGARITHM: $y=\ln x$

$$
\frac{d y}{d x}=\frac{1}{x}
$$

Proof:

Remember that $y=\ln x \Longleftrightarrow e^{y}=x$, so:

$$
\begin{array}{rlrl}
e^{y} & =x & \text { Using implicit differentiation } \\
\frac{d}{d x} e^{y} \cdot \frac{d y}{d x} & =1 \Longleftrightarrow e^{y} \cdot \frac{d y}{d x}=1 & \text { re writing and Solving for } \mathrm{y} \\
\frac{d y}{d x} & =\frac{1}{e^{y}} \Longleftrightarrow \frac{d y}{d x}=\frac{1}{e^{\ln x}} & \text { Substituting for its value } \\
\frac{d y}{d x} & =\frac{1}{x} & &
\end{array}
$$

DERIVATIVES

COMPUTATION

EXPONETIALS: WHACHT OUT!!! we derived $\frac{d}{d x} e^{x}$ but what about the more general form $\frac{d}{d x} a^{x}$?

Proof (continuation):

Rewrite a as $e^{\ln a}$ then:

$$
\begin{aligned}
a^{x} & =e^{\ln a^{x}}=e^{x \ln a} & \\
\frac{d}{d x} a^{x} & =\ln a e^{x \ln a} & \text { Using implicit differentiation } \\
\frac{d}{d x} a^{x} & =\ln a\left(e^{\ln a}\right)^{x}=a^{x} \ln a & \text { Undoing the change }
\end{aligned}
$$

And notice that then $M(a)=\ln a$
The proof for the $\log _{a} x$ in any base a is identical to the $\ln x$

DERIVATIVES

APPLICATIONS

INCREASE: What means for a function to be increasing?
if $a<b \Rightarrow f(a)<f(b)$
if $f^{\prime}(x)>0 \Rightarrow f(x)$ is increasing

DECREASE:

$$
\begin{gathered}
\text { if } a<b \Rightarrow f(a)>f(b) \\
\text { if } f^{\prime}(x)<0 \Rightarrow f(x) \text { is decreasing }
\end{gathered}
$$

DERIVATIVES

APPLICATIONS
MAXIMUM/MINIMUM: Where does the function attains its local maxima and minima?

$$
\text { if } f^{\prime}\left(x_{0}\right)=0 \Rightarrow f\left(x_{0}\right) \text { is a critical point }
$$

WHACHT OUT!!! $f^{\prime}(x)=0$ does not automatically mean that we are in a maximum or a minimum. I could be an inflection point

DERIVATIVES

APPLICATIONS
CONCAVITY AND POINTS OF INFLECTION: In what direction does the curve of the function bends?

- If $f^{\prime \prime}(x)>0 \Rightarrow f(x)$ is Concave-up and attains a minimum
- If $f^{\prime \prime}(x)=0 \Rightarrow f(x)$ is neither and possibly an inflection point
- If $f^{\prime \prime}(x)<0 \Rightarrow f(x)$ is Concave-down and attains a maximum

DERIVATIVES

APPLICATTIONS

APPROXIMATIONS:

$$
f(x+d x) \approx f(x)+f^{\prime}(x)\{(x+d x)-x\}, \text { for } x \approx x+d x
$$

Table of Contents

1. Limits
 2. Derivatives

3. Integrals
4. Power Series
5. Multivariate Calculus
6. Implicit Function Theorem
7. Convex and Concave Functions

INTEGRALS

INTUITION

ANTIDERIVATIVE: it is another name for integral.
They can be thought of the reverse operation of the derivative of $F(x)$

$$
F^{\prime}(x)=f(x) \Longleftrightarrow F(x)+C=\int f(x) d x
$$

By the very operation of the derivative, constants disappear. At the time of integration we have to take them back.

Example:

$$
f(x)=x^{3} \Longleftrightarrow F(x)=\frac{x^{4}}{4}+C
$$

INTEGRALS

INTUITION

AREA: Definite Integrals can be thought of as the area under the curve

WHACHT OUT!!! Indefinite and definite integrals are two completelly different objects, they must not be confused.

INTEGRALS

RIEMAN SUMS

It is difficult to measure the area under a curve, but we can approximate it using rectangles

Of course, there is going to be some error, that can be avoided doing the intervals "as small as possible"

$$
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \frac{\Delta x}{n}
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS II

FUNDAMENTAL THEOREM OF CALCULUS II: Let $f(x)$ be a continuous non-negative function in a close interval $[a, b]$. Then:

$$
F(x)=\int_{a}^{x} f(t) d t \text { or } \quad F^{\prime}(x)=f(x)
$$

PROOF:

$$
\Delta F=F(x+\Delta x)-F(x)=\int_{x}^{x+\Delta x} f(t) d t \approx f(x) \Delta x
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS II

PROOF:

$$
\Delta F=F(x+\Delta x)-F(x)=\int_{x}^{x+\Delta x} f(t) d t \approx f(x) \Delta x
$$

Then:

$$
\Delta F(x) \approx f(x) \Delta x \Longleftrightarrow \frac{\Delta F(x)}{\Delta x} \approx f(x)
$$

Taking the limit as $\Delta x \rightarrow 0$

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta F(x)}{\Delta x}=f(x) \Longleftrightarrow F^{\prime}(x)=f(x)
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS I

FUNDAMENTAL THEOREM OF CALCULUS I: Let $f(x)$ be a continuous non-negative function in a close interval $[a, b]$. Then:

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

PROOF: Since integration give us not only a function but a family of them, we can define:

$$
\begin{gathered}
G(x)=\int_{a}^{x} f(t) d t \stackrel{\text { byFTCII }}{\Longrightarrow} G^{\prime}(x)=f(x) \\
\text { since } G^{\prime}(x)=f(x)=F^{\prime}(x) \text {, we have }(G(x)-F(x))^{\prime}=0
\end{gathered}
$$

INTEGRALS

FUNDAMENTAL THEOREM OF CALCULUS I

PROOF:

$$
\text { then } G(x)-F(x)=C
$$

To evaluate C, we evaluate at $x=a$, since $G(a)=0$:

$$
C=-F(a)
$$

Then evaluate the function $G(x)$ at $x=b$ and use the value of C above:

$$
G(b)=F(b)-F(a) \Longleftrightarrow \int_{a}^{b} f(t) d t=F(b)-F(a)
$$

INTEGRALS

PROPERTIES

INDEFINITE INTEGRALS:

$$
\begin{gathered}
\int c f(x) d x=c \int f(x) d x \\
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x
\end{gathered}
$$

INTEGRALS

PROPERTIES

DEFINITE INTEGRALS:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =-\int_{b}^{a} f(x) d x \\
\int_{a}^{a} f(x) d x & =0 \\
\int_{a}^{b} c f(x) d x & =c \int_{a}^{b} f(x) d x \\
\int_{a}^{b}[f(x)+g(x)] d x & =\int_{a}^{b} f(x) d x+\int g(x) d x
\end{aligned}
$$

INTEGRALS

PROPERTIES

DEFINITE INTEGRALS:

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \\
& \frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \text { and } \frac{d}{d x} \int_{x}^{b} f(t) d t=-f(x) \\
& \text { if } f(x) \geq g(x), \forall x \in[a, b] \Rightarrow \int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x \\
& \text { if } f(x) \leq 0, \forall x \in[a, b] \Rightarrow \int_{a}^{b} f(x) d x \leq 0 \\
&\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
\end{aligned}
$$

INTEGRALS

COMPUTATION

ANTIDERIVATIVE: Some integrals are easy to work out because they are just the opposite operation of the derivative.

$$
\begin{array}{rr}
\left.\int_{a}^{b} e^{x} d x=e^{x}\right]_{a}^{b}+c & \left.\int_{a}^{b} \frac{1}{x} d x=\ln x\right]_{a}^{b}+c \\
\left.\int_{a}^{b} \sin x d x=-\cos x\right]_{a}^{b}+c & \left.\int_{a}^{b} \cos x d x=\sin x\right]_{a}^{b}+c \\
\left.\int_{a}^{b} x^{n} d x=\frac{x^{n+1}}{n+1}\right]_{a}^{b}+c &
\end{array}
$$

INTEGRALS

COMPUTATION

SUBSTITUTION: Let $F(x)$ be a non-negative and differentiable function and $g(x)$ a differentiable function in a close interval $[a, b]$. Furthermore let $y=F(g(x))$, then by the chain rule:

$$
y^{\prime}=\frac{d F(g(x))}{d x}=F^{\prime}(g(x)) g^{\prime}(x)=f(g(x)) g^{\prime}(x)
$$

Integrating:

$$
y=\int_{a}^{b} y^{\prime} d x=\int_{a}^{b} f(g(x)) g^{\prime}(x) d x
$$

INTEGRALS

COMPUTATION

Now let:

$$
\begin{aligned}
& u=g(x) \text { and } \\
& d u=g^{\prime}(x) d x
\end{aligned}
$$

Substituting these values into the integrand:

$$
\begin{aligned}
y=\int_{a}^{b} y^{\prime} d x & =\int_{a}^{b} f(\underbrace{g(x)}_{=u}) \underbrace{g^{\prime}(x) d x}_{=d u} \\
& =\int_{g(a)}^{g(b)} f(u) d u \\
& \left.=F(u)]_{g(a)}^{g(b)}=F(g(x))\right]_{a}^{b}+C
\end{aligned}
$$

INTEGRALS

COMPUTATION

Example:

$$
\begin{aligned}
& f(x)=\frac{\ln x}{x} \\
& F(x)=\int_{1}^{2} \frac{\ln x}{x} d x=\int_{1}^{2} \ln x \cdot \frac{1}{x} d x
\end{aligned}
$$

Now let:

$$
\begin{aligned}
u & =\ln x \text { and } d u=\frac{1}{x} d x \\
u(1) & =\ln 1=0 \text { and } u(2)=\ln 2
\end{aligned}
$$

Substituting:

$$
\left.\left.F(x)=\int_{1}^{2} \ln x \frac{1}{x} d x=\int_{u(1)}^{u(2)} u d u=\frac{u^{2}}{2}\right]_{0}^{\ln 2}=\frac{1}{2}(\ln x)^{2}\right]_{0}^{2}+C
$$

INTEGRALS

COMPUTATION

BY PARTS: Let $f(x)$ and $g(x)$ be two non-negative and differentiable functions close interval $[a, b]$. Furthermore let $y=f(x) g(x)$, then by the product rule:

$$
y^{\prime}=\frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Integrating:

$$
\int_{a}^{b} \frac{d}{d x} f(x) g(x) d x=\int_{a}^{b} f^{\prime}(x) g(x) d x+\int_{a}^{b} f(x) g^{\prime}(x) d x
$$

INTEGRALS

COMPUTATION

By the FTC II:

$$
f(x) g(x)]_{a}^{b}=\int_{a}^{b} f^{\prime}(x) g(x) d x+\int_{a}^{b} f(x) g^{\prime}(x) d x
$$

Solving for $\int f(x) g^{\prime}(x) d x$:

$$
\left.\int_{a}^{b} f(x) g^{\prime}(x) d x=f(x) g(x)\right]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

INTUITION: the main object is to make $f(x)$ into something simpler, whilst letting $g(x)$ to remain in something similar or not more complicated.

INTEGRALS

COMPUTATION

Example:

$$
\begin{aligned}
& f(x)=x \cos x \\
& F(x)=\int_{0}^{\frac{\pi}{2}} x \cos x d x
\end{aligned}
$$

Now let:

$$
\begin{aligned}
f(x) & =x \text { and } g^{\prime}(x)=\cos x d x \text { then: } \\
f^{\prime}(x) & =1 \text { and } g(x)=\sin x
\end{aligned}
$$

Integrating by parts:

$$
\left.\left.\int_{0}^{\frac{\pi}{2}} x \cos x d x=x \sin x\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \sin x d x=x \sin x+\cos x\right]_{0}^{\frac{\pi}{2}}+C
$$

INTEGRALS

OTHER TYPES

IMPROPER INTEGRALS: are integrals of the form:

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

In which one (or both) of the limits of integration is infinite and the integrand $f(x)$ is assumed to be continuous on the unbounded interval $a \leq x<\infty$.

INTEGRALS

OTHER TYPES

IMPROPER INTEGRALS: are integrals of the form:

$$
\int_{a}^{b} f(x) d x=\lim _{b \rightarrow t} \int_{a}^{t} f(x) d x
$$

In which $f(x)$ becomes infinite as x approaches b

INTEGRALS

OTHER TYPES

IMPROPER INTEGRALS: can be:

- Convergent: if the improper integral tends to a finite number
- Divergent: if the improper integral tends to infinity

Examples: convergent integrals

$$
\begin{array}{r}
\int_{0}^{\infty} e^{-x} d x=-\left[e^{-x}\right]_{0}^{\infty}=-\lim _{b \rightarrow \infty}\left[e^{-x}\right]_{0}^{b}=-0+1=1+C \\
\int_{0}^{1} x^{-\frac{1}{2}} d x=2\left[x^{\frac{1}{2}}\right]_{0}^{1}=2[1-0]=2+C
\end{array}
$$

INTEGRALS

OTHER TYPES

Examples: divergent integrals

$$
\begin{aligned}
& \left.\int_{0}^{\infty} \frac{1}{x} d x=\ln x\right]_{1}^{\infty}=\ln \infty-\ln 1=\infty-0=\infty \\
& \int_{0}^{1} x^{-2} d x=-\left[\frac{1}{x}\right]_{0}^{1}=-1+\lim _{x \rightarrow 0^{+}} \frac{1}{x}=-1+\infty=\infty
\end{aligned}
$$

Table of Contents

```
1. Limits
2. Derivatives
3. Integrals
```

4. Power Series
5. Multivariate Calculus
6. Implicit Function Theorem
7. Convex and Concave Functions

POWER SERIES

POWER SERIES: they are series of the form:

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

where the coefficients of a_{n} are constants and x is a variable. Notice that power series are themselves functions ($f(x)$)
Example:

$$
\sum x^{n}=1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x} \text { for } x<|1|
$$

POWER SERIES

As well as polynomials, that are finite, power series share some interesting characteristics. It can be said that within the radius of convergence:

- Power series are continuous
- Are differentiable
- Are integrable

POWER SERIES

TAYLOR'S RULE

TAYLOR POWER SERIES: we have seen that power series are functions in their own right, some of them with a close form solution, such as: $\sum x^{n}=\frac{1}{1-x}$.

We would like to know if when we encounter a function, it can be expressed in terms of a power series. It turns out that it is possible to do so within the radius of convergence.

Assume we have any $f(x)$ and we would like to write in the form of a power series, i.e.:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

POWER SERIES

TAYLOR'S RULE

Assume we have any $f(x)$ and we would like to write it in the form of a power series, i.e.:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

As seen in previous slide, infinitely many derivatives can be taken:

$$
\begin{aligned}
f^{\prime}(x) & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots \\
f^{\prime \prime}(x) & =2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2} \ldots \\
\ldots & \\
f^{n}(x) & =n!a_{n}+\text { Terms containing } x \text { as a factor }
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Now notice that at $x=0$, the terms that share x as a factor cancel, having:

$$
\begin{aligned}
f(0)=a_{0} & \Rightarrow a_{0}=f(0) \\
f^{\prime}(0)=a_{1} & \Rightarrow a_{1}=f^{\prime}(0) \\
f^{\prime \prime}(0)=2 a_{2} & \Rightarrow a_{2}=\frac{1}{2} f^{\prime \prime}(0) \\
\ldots & \\
f^{n}(0)=n!a_{n} & \Rightarrow a_{n}=\frac{1}{n!} f^{n}(0)
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Substituting back into the original equation:

$$
\begin{aligned}
f(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{3}(0)}{3!} x^{3}+\ldots+\frac{f^{n}(0)}{n!} x^{n}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!} x^{n}
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Example: take $\ln (1+x)$

We would like to write it in the form: $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, then:

$$
\begin{aligned}
f(0) & =\ln 1=0 & \Rightarrow a_{0}=0 \\
f^{\prime}(0) & =\left.\frac{1}{1+x}\right|_{x=0}=1 & \Rightarrow a_{1}=1 \\
f^{\prime \prime}(0) & =\left.\frac{-1}{(1+x)^{2}}\right|_{x=0}=-1 & \Rightarrow a_{2}=-\frac{1}{2} \\
\ldots & & \\
f^{n}(0) & =\left.(-1)^{n-1} \frac{(n-1)!}{(1+x)^{n}}\right|_{x=0}=(-1)^{n-1}(n-1)! & \Rightarrow a_{n}=(-1)^{n-1} \frac{1}{n}
\end{aligned}
$$

POWER SERIES

TAYLOR'S RULE

Example: $\ln (1+x)$
Substituting back into Taylor's formula:

$$
\begin{aligned}
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{n} \frac{x^{n+1}}{n+1} \\
& =\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}
\end{aligned}
$$

Look at the gif for $\ln (1+x)$:
https://upload.wikimedia.org/wikipedia/commons/2/27/ Logarithm_GIF.gif

Table of Contents

1. Limits

2. Derivatives
3. Integrals
4. Power Series
5. Multivariate Calculus

6. Implicit Function Theorem

7. Convex and Concave Functions

MULTIVARIATE CALCULUS

INTRODUCTION

Many functions do not depend only on one variable but in an undefined number of them, e.g.:

$$
z=f(x, y)
$$

Is a function that depends only on x and y. Of course a function might have any number of variables:

$$
z=f(\boldsymbol{x})=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

This specific arrange of variables is called a vector. As such, we can define bold \mathbf{x} as this vector, hence:

$$
\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

MULTIVARIATE CALCULUS

DOMAIN

DOMAIN: the domain is all the points $P=\left(x_{1_{0}}, x_{2_{0}}, \ldots, x_{n_{0}}\right)$ in the plane for which the function $z=f(\mathbf{x})$ is defined Example 1:

$$
z=f(x, y)=\frac{1}{x-y}
$$

This function is not define for all values where $x=y$ Example 2:

$$
w=g(\boldsymbol{x})=\sqrt{9-x^{2}-y^{2}}
$$

This function is not define for all values where $x^{2}+y^{2} \geq 9$

MULTIVARIATE CALCULUS

LEVEL CURVES

LEVEL CURVE: is the reflected line over the $x y$-plane where the function takes the same value:

$$
z=f(x, y)=c
$$

The collection of level curves is called the contour-map

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

PARTIAL DERIVATIVE: is the derivative of a multivariate function w.r.t. one of its variables. The key idea is to allow one variable change while keeping the rest constant:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}=f_{x}(x, y) \\
& \frac{\partial z}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}=f_{y}(x, y)
\end{aligned}
$$

And in general:

$$
\frac{\partial z}{\partial x_{i}}=\lim _{\Delta x_{i} \rightarrow 0} \frac{f\left(x_{i}+\Delta x_{i}, \boldsymbol{x}_{-i}\right)-f(\boldsymbol{x})}{\Delta x_{i}}=f_{x_{i}}(\boldsymbol{x})
$$

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

Example:

$$
\begin{aligned}
f(x, y) & =x^{4}+3 x^{2} y^{3}-\ln \left(2 x^{2} y\right) \\
f_{x} & =4 x^{3}+6 x y^{3}-\frac{2}{x} \\
f_{y} & =9 x^{2} y^{2}-\frac{1}{y}
\end{aligned}
$$

NOTATION: $\frac{\partial z}{\partial x}$ this limit (if it exist) is the partial derivative of z w.r.t. x. The most common notations are:

$$
\frac{\partial z}{\partial x}, \quad z_{x}, \quad \frac{\partial f}{\partial x}, \quad f_{x}, \quad f_{x}(x, y)
$$

MULTIVARIATE CALCULUS

PARTIAL DERIVATIVES

As with functions of one variable, multivariate functions are functions on their own right and we can expect to have second order partial derivatives w.r.t. x :

$$
\begin{array}{cc}
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=f_{x x} & \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x \partial y}=f_{y x} \\
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y \partial x}=f_{x y} & \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=f_{y y}
\end{array}
$$

More interestingly $f_{x y}=f_{y x}$ Example:

$$
\begin{array}{ll}
f_{x}=4 x^{3}+6 x y^{3}-\frac{2}{x} & f_{y x}=18 x y^{2} \\
f_{y}=9 x^{2} y^{2}-\frac{1}{y} & f_{x y}=18 x y^{2}
\end{array}
$$

MULTIVARIATE CALCULUS

TANGENT PLANE

TANGENT PLANE: The concept of tangent plane to a surface corresponds to the concept of tangent line to a curve. So the tangent plane of a surface at a point is the plane that "best approximates" the surface at that point.

Figure: Tangent plane

Tangent line Tangent plane

$$
\begin{array}{rl}
m\left(x-x_{0}\right)+\left(y-y_{0}\right)=0 & a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+\left(z-z_{0}\right)=0 \\
f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\left(f(x)-f\left(x_{0}\right)\right)=0 & f_{x}\left(x-x_{0}\right)+f_{y}\left(y-y_{0}\right)+\left(f(x, y)-f\left(x_{0}, y_{0}\right)\right)=0
\end{array}
$$

Table of Contents

1. Limits

2. Derivatives
3. Integrals
4. Power Series
5. Multivariate Calculus
6. Implicit Function Theorem
7. Convex and Concave Functions

IMPLICIT FUNCTION THEOREM

CHAIN RULE

Let $w=f(x, y)$ be a differentiable function in a closed interval. Let also $x=g(t)$ and $y=h(t)$ be continuous functions in the same interval. Then:

$$
\frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}
$$

In general for $w=f(\boldsymbol{x})$:

$$
\frac{\partial f(\boldsymbol{x})}{\partial t}=\frac{\partial f(\boldsymbol{x})}{\partial x_{1}} \frac{\partial x_{1}}{\partial t}+\ldots+\frac{\partial f(\boldsymbol{x})}{\partial x_{n}} \frac{\partial x_{n}}{\partial t}
$$

IMPLICIT FUNCTION THEOREM

THEOREM

THEOREM: Let $F(x, y)$ have continuous partial derivatives throughout some neighbourhood of a point (x_{0}, y_{0}), and assume that $F\left(x_{0}, y_{0}\right)=c$ and $F_{y}\left(x_{0}, y_{0}\right) \neq 0$. Then there is an interval I about x_{0} with the property that there exists exactly one differentiable function $y=f(x)$ defined on I such that $y_{0}=f\left(x_{0}\right)$ and:

$$
F[x, f(x)]=c
$$

Further, the derivative of this function is given by the formula

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}
$$

and is therefore continuous.

IMPLICIT FUNCTION THEOREM

THEOREM

Example: consider $F(x, y)=x^{2} y^{5}-2 x y+1=0$ Taking the partial derivatives:

$$
\begin{array}{r}
F_{x}(x, y)=2 x y^{5}-2 y \\
F_{y}(x, y)=5 x^{2} y^{4}-2 x
\end{array}
$$

Then:

$$
\frac{\partial y}{\partial x}=-\frac{F_{x}}{F_{y}}=-\frac{2 x y^{5}-2 y}{5 x^{2} y^{4}-2 x}
$$

Table of Contents

```
1. Limits
2. Derivatives
3. Integrals
4. Power Series
5. Multivariate Calculus
6. Implicit Function Theorem
```

7. Convex and Concave Functions

CONVEX AND CONCAVE FUNCTIONS

INTUITION

CONCAVE FUNCTION: is a function where no line segment joining two points on the graph lies above the graph at any point.

CONVEX AND CONCAVE FUNCTIONS

DEFINITION

DEFINITION: Let $f(x)$ be a function defined on the interval I. Then $f(x)$ is said to be concave if $\forall a, b \in I$, and $\forall \lambda \in[0,1]$ we have:

CONVEX AND CONCAVE FUNCTIONS

INTUITION

CONVEX FUNCTION: is a function where no line segment joining two points on the graph lies below the graph at any point.

DEFINITION: Let $f(x)$ be a function defined on the interval I. Then $f(x)$ is said to be convex if $\forall a, b \in I$, and $\forall \lambda \in[0,1]$ we have:

$$
f((1-\lambda) a+\lambda b) \leq(1-\lambda) f(a)+\lambda f(b)
$$

CONVEX AND CONCAVE FUNCTIONS

JENSEN'S INEQUALITY

A function $f(x)$ of a single variable defined on the interval I is concave if and only if $\forall n \geq 2$:

$$
\begin{array}{r}
f\left(\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}\right) \geq \lambda_{1} f\left(x_{1}\right)+\ldots+\lambda_{n} f\left(x_{n}\right) \\
\forall x_{1}, \ldots, x_{n} \in I \text { and } \forall \lambda_{1}, \ldots, \lambda_{n} \geq 0 \mid \sum_{i=1}^{n} \lambda_{i}=1
\end{array}
$$

A function $f(x)$ of a single variable defined on the interval I is convex if and only if $\forall n \geq 2$:

$$
\begin{aligned}
& f\left(\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}\right) \leq \lambda_{1} f\left(x_{1}\right)+\ldots+\lambda_{n} f\left(x_{n}\right) \\
& \forall x_{1}, \ldots, x_{n} \in I \text { and } \forall \lambda_{1}, \ldots, \lambda_{n} \geq 0 \mid \sum_{i=1}^{n} \lambda_{i}=1
\end{aligned}
$$

CONVEX AND CONCAVE FUNCTIONS

DIFFERENTIABLE FUNCTIONS

DEFINITION: The differentiable function $f(x)$ of a single variable defined on an open interval I is concave on I if and only if:

$$
f(x)-f\left(x^{*}\right) \leq f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)
$$

INTUITION: The graph of the function $f(x)$ lies below the the any tangent line

CONVEX AND CONCAVE FUNCTIONS

DIFFERENTIABLE FUNCTIONS

DEFINITION: The differentiable function $f(x)$ of a single variable defined on an open interval I is convex on I if and only if:

$$
f(x)-f\left(x^{*}\right) \geq f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)
$$

INTUITION: The graph of the function $f(x)$ lies below the the any tangent line

CONVEX AND CONCAVE FUNCTIONS

TWICE-DIFFERENTIABLE FUNCTIONS

PROPOSITION: A twice-differentiable function $f(x)$ of a single variable defined on the interval I is:

- Concave: if and only if $f^{\prime \prime}(x) \leq 0$ for all x in the interior of I
- Convex: if and only if $f^{\prime \prime}(x) \geq 0$ for all x in the interior of I INTUITION: For a concave (convex) function, the slope of the tangent line to a point becomes lesser as we move along the x-axis

